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A Pole Assignment in a Specified
Disk by using Hamiltonian Properties
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I. Introduction

The basic idea of pole assignment design is really
quite simple. If a system is composed of = state
variables and every state variable is available as a
measurable output, the closed loop poles of the
system to be controlled by state feedback can be
arbitrarily assigned using » independent feedback
gain terms. Practically, pole assignment design can
be used to modify the dynamic response of the given
system, such as damping ratio, overshoot, etc., and it
has been of fundamental importance in the control
system discipline for many years and numerous
algorithms have been proposed.

Shafai and Bhattacharyya [1] transformed a given
multi-input system to an upper block Hessenberg
form by means of orthogonal state coordinate trans-—
formations. The state feedback problem is then
reformulated in terms of Sylvester’'s equation.
Therefore, the transformed system matrices along
with certain assumed block forms for unknown
matrices enable the Sylvester equation to be decom-—
posed and solved effectively. A distinct point of the
proposed algorithm is that the solution procedure can
be tailored to parallel implementation and is therefore
fast, but this method can not be used in case of a
system that has a singular input matrix. In [2], the
problem in analysis of root clustering has been
derived by using an extended Lyapunov equation that
provides necessary and sufficient conditions for a
given matrix to have all its eigenvalues in the
specified regions. The conditions are formulated in
terms of semi-positive definite matrices which cons-
titute a parameterization of the feedback control.
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Another method working with the Lyapunov equation
for control law design is proposed in [3].

More recently, mathematical algebraic tests for the
spectrum of the state matrix to be clustered in a
desired region of the complex plane were developed.
In this direction, efforts to construct a modified
Lyapunov matrix equation leading to efficient syn-
thesis procedures have been made [4]. Furuta and
Kim [5] proposed a method for pole assignment in a
specified disk by wusing the well known discrete
Riccati equation. In their proposed algorithm, the
state feedback control law is determined by using the
solution of a discrete Riccati equation which can be
computed directly using the design specification
parameters. Also they proposed a linear fractional
transformation method to solve the same types of
pole assignment problems [7]. Most works in analysis
of root clustering are based on Lyapunov or Riccati
equations, but there is no method incorporating the
Hamiltonian characteristics with the property of
disks.

This paper presents a different method to assign
the closed loop pole in a specified disk by a state
feedback for linear continuous time-invariant systems
under the condition of given system’s distinct poles
by incorporating Gershgorin's theorem into a Hamil-
tonian matrix. Firstly, the Hamiltonian matrix is
chosen such that all its eigenvalues are located in a
specified disk by wusing Gershgorin’s theorems.
Secondly, a feedback control law is determined using
the similarity and the properties of the chosen
Hamiltonian matrix and a different Hamiltonian
matrix constructed from the matrices of the given
system. The obtained feedback control law not only
gives the «closed loop system with desired
eigenvalues, but also minimizes a quadratic perfor-
mance index. Also, it can be extended to assign the
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poles into sub-specified regions.

II. Preliminaries
1. Problem statement
Let us consider a linear continuous time-invariant
dynamic system

x= Ax+ Bu 1)

where x< R", u=R” and ye< R’ are respectively
the state, control input and output vectors. The
matrices in (1) are known with appropriate dimension
and it is assumed that the pair (A, B) is contro-
llable.
The problem to be considered is to determine the
state feedback law
u= Fx (2)
such that the closed-loop system poles lie in the disk
D(—a,r») with the center (—a+;0) and the radius
r, (@ and 7 are any positive scalars), and this
state feedback control law minimizes a quadratic
performance index

= *%fom[xTQx + WTRuldt 3)

where @ is a symmetric positive semi-definite
matrix written as @ = C7C, C is any matrix that
the pair (A, C) is observable and R is a symmetric
positive definite matrix.
2. Basic theory

In this subsection, we introduce some theorems
which are the basic theory of the proposed method.

Theorem 1 [10] : (Gershgorin’s theorem)

Let A be a distinct eigenvalue of an arbitrary
matrix

A = [a;} € R™"
Then for some integer { (1 < i < »), we have

tai—Al < laal + lagl +-+ la;l

+ Hail ++ laul )

For each i = 1,--+, n, the inequality, (4) determines a
closed circular disk in the complex A plane whose
center is at a; and radius is given by the
expression on the right hand side of (4).

Theorem 1 states that each of the eigenvalues of
A iies in one of these # disks.

Theorem 2[10] : (Extension of Gershgorin’s theorem)
If » Gershgorin's disks from a set S are disjoint
from the (z—p) other disks of the given matrix A4,
then S contains precisely p eigenvalues of A.

Theorem 3[81: The optimal control law for the
controllable system, (1) which minimizes the perfor-
mance index, (3) is given by

u = —~R'B'Px = Fx (5)
where P is the symmetric, positive definite matrix

RO - KISSH- AASEES =2X R4 2 K63 198 12

solution of the algebraic Riccati equation

AP + PA — PBR'B'P + Q=0 6

Q=0"=20, R=R">0

III. Pole assignment
It is a well known the fact that the coefficient

matrix H
. A —-BR!BT
7 [ -Q -AT ] @
has = eigenvalues with negative real parts and #
eigenvalues with positive real parts, and those eigen-

values are located symmetrically about the imaginary
axis. The eigenvalues of the optimal feedback system

x = (A+BF)x (8
are identical to those eigenvalues of the matrix, (7)
that have negative real parts. It is, therefore, possible
to assign the eigenvalues of the matrix, (7) instead
of the eigenvalues of the feedback system (A-+ BF).

Let us define an equivalent transformed matrix, H
of the Hamiltonian matrix, H as the following

H= T'HT )
where T is a non-singular matrix.

The particular problem to be considered here is to
establish the matrix H that is equivalent to the
matrix H by using Gershgorin’s theorem. This
means that the eigenvalues of the matrices H are
same with the matrix H. If the eigenvalues with
negative real parts of the matrices H or H are
located in the disk D(—a, ) in the left half complex
plane, then the eigenvalues with positive real parts of
the matrices H or H are located in the disk
D(a,r) in the right half complex plane. Those disks
D(—a,7) and D(a,r) are symmetric about the
imaginary axis.

Because the matrix H is partitioned into four
blocks as shown in (7), we can separate the matrices
‘H and T by the same way.

T=[T1 T2], "=~ F_IE]
Hy H,
where H,, H,, Hy, H,, T\, T», T3, and T, are
matrices with (#Xx#%) elements.
Now (9) becomes
[EE ];_ [Tl T, ]‘1

H;, H, T; Ty
A —BR!BT T, T,
(L TR R TR (10)

For the sake of simplicity, let 7Ty =0. If the

sub-matrices 7, and 7T, are non-singular, then the
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matrix 7 is non-singular 8], and (10) can be
written in the form

H, H, ] - [ T -1 T, T ]

H; H, 0 77!
A —-BRI'BT 1T T,
x[_Q R [0 T4] 11
From (11), we obtain the following equations
H = T7i%A + T, T;'QT, (12a)

H = TTHA + L, T{'Q Ty —
TTYBR'BT —-T,T;'ADT, (12b)
H, = —T7'QT, (12¢c)

H, = —T,'QT, —T;'ATT, (12d)

As we can see from the above equations, there are
4 equations (12a)-(12d) with 9 unknown variables
QR T, T,, Ty, H. H,, H;, and H,. It means that
by assigning the values of any 5 variables, we can
determine 4 other variables.

Now we are going to discuss about the solution
based on those equations to solve our pole assign-
ment purpose.

Firstly, consider (12c). This equation is equivalent
to

Q= —T,H Ty} (13)
In the Hamiltonian matrix, (7) the matrix @ can be
given by the form
RQ=0"2>20
Therefore, the following relation is satisfied
(- TOH; T = (T7HT H (-1

To satisfy this condition we can choose H; and T

as
H = H 20 (14)
and
-T, = (T7H” (15)
From (13) and (15), the following yields :
Q= (N H T (16)

Secondly, from (12d), we can obtain T,

T, = —Q (AT T+ T, H,) amn

Substituting (15), (16), and (17) into (12a), we can
get

H = T/'AT, — H; |

TIT AT( Tl—l) TE

- H, 'H H, (18
From Gershgorin’s theorem, we know the fact that
the elements on the diagonals of the matrices H;

and H, are denoted the centers of the circles which

contain the eigenvalues of the matrix H or H. We

want that those centers are symmetric about
imaginary axis. That means

H = —H' 19)
As a simple way to satisfy simultaneously (18) and
(19), we can consider the case when the matrices
A, H;, Hy, and T, are transformed as diagonal
form. In this case (18) becomes (19).
If the matrices A, H;, H,, and T, are diago-
nalized, then (16) and (17) become respectively

Qp = Ty’ H (20)
where @p is a state weighting matrix corresponding

to a diagonal form of matrices 7, and Hi.
T, = H, T (AT+H,) (21)

And T, is a diagonal form too. Substituting (12d)
into (12b) and using (15) and (21), we can get

H, = H, (A’ H])+ T7'BR'BTTTY (22

From now, we can determine a matrix H such
that it is equivalent to the matrix H. That is, by
choosing the matrices H,, H;, H;, R, and T;, we
can calculate 7y, Qp, T», and H, by (15), (20),
(21), and (22) respectively.

Theorem 4 : We assume ‘that two sets of disks
with radius 7., and »,, are disjoint. If the
sub-matrices H; and H; satisfy the conditions

H =[] <0, G, =1,,n) (23)
and
ITH, Hy+elllw <7 (24)
then the eigenvalues with negative real parts of the
Hamiltonian matrix H are located in the disk
D(—o,r). Where 7., and 7,,, are respectively
the radius of the disks that contain the eigenvalues
with negative and positive real parts of the matrix
‘H, I is an identity matrix with appropriate
dimension, and || - | » denotes H, norm.

Proof : It is known from Theorem 2 that if two
sets of disks with radius »,, and »,,, are disjoint,
then every set of disks contains precisely = eigen-
values of the Hamiltonian matrix H. If the elements

Ry, (i,7 = 1,-,n) satisfy the condition, (23),
then from Gershgorin's theorem it is yielded that the
diagonal elements 7L4i,- ti=, of the matrix H, are
the centers of the disks that contain the eigenvalues
with negative real parts of the Hamiltonian matrix

‘H, and the radius of these disks are satisfied as
follows

2,*,‘| hai| + ’ZJ Ty | (25)

Vieri =
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where

ﬁa = [7l3ij], (i = 1,--,m)
All of disks with radius #,;; belong to the disk
D(—a,r) if

| Bagriz=jta| + 7 < 7 (26)
Substituting (25) into (26), we can get

| hajri=j+al + ,zg*,-l Fg |

+ ,Z& | Byl < 7, (G = 1,,n) 27

Explicitly, the condition, (27) is an expression of the
condition, (24). [ |
From (19) and (23), we can see
_]71 = [ -il];,:] > O
From the above equation and Gershgorin’s theorem

we obtain the following corollary.
Coroltary 1 : The eigenvalues with positive real

parts of the matrix H are located in the disks with

centers at k=, and the radius are

Yrigi = j=g#i, hig| + ;Zl | Ry | (28)
where
E = [Zzij], (i = 1,"',71)
Proof : This proof is clear from Gershgorin’s
theorem, and it is omitted. [ ]

If the eigenvalues with negative real parts of H
are located in the disk D(—a, »), then to satisfy the
symmetrical property of the Hamiltonian matrix H,
its eigenvalues with positive real parts are auto-
matically located in the disk D(e, ).

Corollary 2 : Two sets of disks with radius 7.,

and 7,,, are disjoint if the following condition with
infinity norm is satisfied
IHi—al Hlllw < 2a—7 (29)

Proof : If the condition, (27) and the following
condition

l7llii_0|,‘=j+ i=§;*i| v

+ Z\ | 7l2ﬁ| < 7, (i=1,,n)

are satisfied, then we can get
Yeii S 7, 7 ief max = ¥
and
Viigi S 7, ¥ vig.max — ¥
Thus, the minimum distance between two sets of
disks with radius 7., and 7., is 2¢ — 2». If
7 vig. mx 1S Increased by Ar ;= 2a — 27, ie,

Tvgmx — ¥ + 2a — 2v = 2a — 7
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then the minimum distance is zero. In the other
words, if

Vgi < 204 — 7
then two sets of disks with radius 7., and 7,

are disjoint. The above inequality is correct if the
following condition is satisfied

| —ﬁli,—ali=j+ j:,:,*i' 7L1,'j| +

BTl <2 = 7 (= Len)  (GB0)

Explicitly, the condition, (30) is an expression of the
condition, (29). |

Remark 1 The conditions to constrain the
eigenvalues with negative real parts of the
Hamiltonian matrix H in the disk D(—a,») are
(23), (24) and (29).

Remark 2 : Because the row sum in the right side
of (4) can be replaced by the column sum, the
conditions in (24) and (29) can be expressed as
follows :

" H—al ] “ < @31
H; .
and
ﬂ [_H2 { 2a—7r (32)
H4+(ZI 1
where || - ||, denotes the first norm.

Theorem 5 @ Assume that a matrix M transforms
the matrix A to a diagonal form. Then, the state
weighting matrix @ satisfying the pole assignment
problem in the specified disk D(—a, ») is given by

Q= MY T, HM
and the state feedback control law, (5) assigns the
closed loop poles of the system, (1) in the specified
disk D(~a,r).

Proof : If a matrix M transforms the matrix A,
which is located in the Hamiltonian matrix H to a
diagonal form, then the other elements of H must be
transformed respectively. This can be verified by
considering the following similar transformation

mi=[ g i

—1 ~1 T

[ [ % T2 [0 ] @
where A and M are the diagonal eigenvalue matrix
and the corresponding eigenvector matrix, respec-

tively, for the matrix A, and
R = M'BR'BT(MH)T (39)

and

Q= MQM (35
As discussing before, if the state weighting matrix is
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determined by (20), then the Hamiltonian matrix H
or H will have the eigenvalues with negative real
parts in the specified disk D(—a, »). Comparing (35)
to (20) we can obtain
dp = Z)
or
Q= WH T Mt (36)

Now, it is known from Theorem 3 that the
feedback control law, (5) which minimizes the
performance index, (3) will give the system, (1)
stable eigenvalues of the Hamiltonian matrix H. As
mentioned above, those = stable eigenvalues are
located in the disk D(—a,7), it is obviously that the
feedback control law, (5) assigns the closed-loop
poles in the specified disk D(—oa, r). ]

Corollary 3 Suppose that the state weighting
matrix obtained by Theorem 5 is used to determine
the feedback control law, (5) under a pole assignment
problem in the specified disk D{(—a,r), then the
feedback control law, (5) minimizes the performance
index, (3).

As the result, if we use the state weighting matrix
in the Hamiltonian matrix, (7) obtained by Theorem 5
to solve the Riccati equation, (6), we can find out a
feedback control law minimizing the performance
index, (3), because we can also get the solution of
the Riccati equation from the Hamiltonian matrix.

The different feedback matrix F can be obtained
by changing the matrices H,, H;, T, or R. If the
-05

matrix 7} is multiplied by any scalar =
(n > 0) and let
R, = nR
then from (22) we get
o= H (A-H)
+ (ST B R BT (07 )7t
= H, "(A*- H )+ T{'BR ' BTT}!
The above equation shows that the matrix H, is not
changed when the matrices 7, and R are replaced
by » %57, and xR, respectively. In this case, the
weighting matrix @ in (36) becomes
Q=W T HMT = 1
Therefore, if the matrices @ and R are multiplied

by any scalar n, (» > 0), then the matrix H 1is not
changed and its eigenvalues remain at the same
values.

From the above discussion, we can get the
following procedure for the pole assignment problem
in a specified disk.

Step 1 : Transform the Hamiltonian matrix H to
the matrix Hp or diagonalize A.

Step 2 : Establish the matrices H, = diag ( Z4;)
Hy = diag( ha;). Choose  hu; <0 and Zs; > 0
satisfying (24). .

Step 3 : By choosing T, = diag(¢,;), ¢,;+ 0 and
R=R">0, calculate H, from (22) under the
condition that the elements %,; of H, must satisfy
the condition, (29).

Step 4 : Determine the matrix @ from (36).
Step 5 : Determine the optimal feedback F from (5)

IV. Numerical example
Let us consider a problem to assign the closed
loop system poles in the disk D(—6,2) for the
following system matrices
00
10
01

-1 0 1

1 -2 2 } B = {
1 0 3

Step 1 : Diagonalize A by using

—2.0000 0 0 }

A:

a4 = 0 —7.09%0 0

0 0 3.0990
'U —0.9832 0.0912]

M= 11 0.146 —0.3791

0 0.0974 —0.9209
Step 2 : Establish the matrices H, and H,

-6 0 0
0 0 —5.5
o 2 0 0
0 0 1.5
Step 3 : Choose 7y, R and calculate the matrix H,
0.26 0 0
T1=[O 1 0 ,R=[(1)(1)]
0 0 0.3
o 1.4407 —0.1623  5.8330
H, = [—0.1623 1.4060 —0.3575
5.8330 —0.3575 —0.9144

As the result, the matrix H, satisfies the condition,
(29).
Step 4 : Determine the state weighting matrix @

[ 1.5974 3.4137 0.3638 l

Q = |3.4137 29.5858  —12.5171

0.2638 —12.5171 24 .5802
Step 5 @ Determine the optimal feedback law F

F = [—0.5573 ~3.7829 0.3797]
—0.8085  0.3797 —8.7909

The eigenvalues of the closed loop system
A{A+BF) = {—7.1023 —4.754 —6.7171}
are located within D(—6,2).
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V. Conclusion

This paper presents a method for assigning the
closed loop poles in a specified disk by a state
feedback for linear continuous time-invariant systems
by applying Gershgorin’s theorems and the properties
of the Hamiltonian matrix. A distinct point of the
proposed algorithm is that the closed loop matrix is
firstly established. In this case, the sub-regions that
contain the eigenvalues of the closed loop matrix can
be assigned at the desired positions in the specified
disk D(—a,r) before determining the feedback
control law. This matter is important for solving the
pole assignment problem in uncertain systems. Also,
in this paper it is shown how to choose the different
pairs of the weighting matrices @ and R such that
all the poles of the optimal closed loop system
remain at their positions in the condition of distinct

given system’s poles. Furthermore, it can be

extended to assign the closed loop pole into a
specified disk by output feedback.
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