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An Image-Based Stereo Visual Servoing
Algorithm Robust to the Camera Extrinsic Parameters
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1. Introduction

With the advances in computer vision hardware it
has become attractive to consider developing robot-
vision system which makes use of vision as their
primary form of feedback. This trends towards visual
servoing systems stands in contrast to the traditional
notions of machine vision. In that tradition, vision
system typically measures features or target positions
in robot’s work-space in support of off-line robot
motion planning. The performance of such a system
is highly dependent on the accuracy of the calibration
of both the manipulator and camera subsystems, as
the connection between them is open loop by design.
The parameters of subsystems may be obtained by
high accuracy -calibration processes. However, since
calibration process is designed using idealized models
and is performed in special regimes of operation,
small calibration errors in parameters are inevitable.
These small errors distort the geometry of the
camera and manipulator transformation so that in
practice it may degrade the performance and it may
even cause instability. In contrast, if vision system is
used both for planning and execution of manipulator
motion, the desired configuration is described as a
particular set of visual observations, and possibly, the
need for exact calibration information may be relaxed.
This trend towards "visual servoing” systems stands
in contrast to the traditional vision system for
statically planning future actions of robot. Corke
presents an historical overview of the field of visual
servoing for manipulation[1].

The control objective of the visual servoing system
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is to control manipulator’s gripper motion in order to
place the image plane coordinates of features on the
target at some desired position. The desired image
coordinates could be constant or changing with time.
The control strategy used to achieve the control
objective is based on the minimization of an objective
function at each instant of time. Predominantly
literatures use a Newton like method to minimize the
measured visual error. In [2] Espiau et al. introduced
interaction matrices for primitive visual features,
similar concept to the feature Jacobian introduced in
[3], and used its generalized inverse for generating
gripper velocity. In their approach the feature Jaco-
bian is assumed to be known. It should be evaluated
at the relative position of an object with respect to
the camera using inverse projection, significant source
of calibration sensitivity. Papanikolopoulos and Khosla
encoded a tracking task as a minimizing the sum-of-
squared difference optical flow[4]. They used an
adaptive mechanism to compensate for uncertainties
in the model and to determine the depth related
parameters in tracking an object. the major drawback
of this algorithm is to require an extra initialization
process to align camera and target frames. Castano
and Hutchinson introduced a new hybrid vision/
position control structure[5]. They decomposed the
task such that visual servoing is used only to control
motion in the plane parallel to the camera’s image
plane, while errors in depth are controlled by a
trajectory planner. The success of task decomposition
depends strongly on the calibration of camera. More
recently some researchers have introduced uncali-
brated stereo cameras in their systems and provided
successful working demonstrations(6][7]. In [6]
Hollinghurst and Cipolla proposed a position based
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servoing algorithm based on the weak perspective
model of stereo cameras. It is valid to estimate
position of a robot and an object only when the
depth of an object is small compared with the
viewing distance. Hager et al. introduced image based
servoing algorithm using a nonlinear position esti-
mator to remove the inverse transformation for the
manipulator’s  Cartesian  position[7]. Experiments
demonstrate that the proposed control algorithm is
robust to the relatively large calibration error,
however the stability of overall system remains
unproven.

The objective of this work is to explore the
robustness issues surrounding such a visual servoing
system using fixed stereo cameras external to the
manipulator. In particular, we wish to understand the
effects of the extrinsic camera parameter calibration
errors on the performance of visually based control
strategies.

This paper is organized as follows. In section II,
we briefly review a stereo camera model and develop
useful identities regarding camera perspective trans-
formation and its Jacobian. In section III, we present
a formal statement of the problem of three degree of
freedom relative positioning of a manipulator's
gripper and review traditional approaches to the
present problem setting. In section IV, we present
simple and robust control algorithms based on
modified gradient and Newton method, and the
stability properties of the presented controllers are
discussed. Finally, section V gives simulation results
and comparison Wwith previous approaches are
discussed.

II. Camera model and identities
This section offers a brief overview of the models
associated with stereo cameras and some algebraic
identities from the structure of those models.
1. Stereo camera model
Consider two camera coordinate systems given by
2., 2, and a world coordinate system 2, as illus-

trated in Fig. 1. The two cameras are identified as
cameral and camera 2. The stereo projective

Fig. 1. Stereo camera model.
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transformation, g: R° — R', maps a spatial point,
r<R° to a par of image plane points, @=R?,
0=(0,,6.,80,,0,,)". In general, this transfor-
mation can be written as
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where ¢; and f; represent the location and the
focal length of camera 7, and x;, ¥; and z; are
the orthogonal unit vectors defining the local coor-
dinate system of camera : with z; directed along
the optical axis of the camera ¢. All positions, c;

and 7; and orientations x;, ¥; and z; are
expressed with respect to X, [8].

Defining D;:= (r— c,-)T z;, the Jacobian of the
projective transformation g evaluated at », Dg(7),
can be written as

—Al(r— e)x 3,17/D}

AlGr—e)x £,17/DY | & pes (g
—fAl(r— e)x y,17/D}

fl(r— )X x,] T/D%

where ere X denotes the vector cross product. The
Jacobian matrix relates the rate changes in position
in work-space to the rate changes in camera image
planes. Note that this Jacobian will lose rank when
(r— c)x(r— ¢,)=0, that is, r € ¢,c; . In other
words, if the point is moving along the line con-
necting the focal points of the cameras, its image
points in image planes do not change.
2. Some useful algebraic identities

We begin by noting that (2.1) can equivalently be
written in the form [7]

A(O)r=K0) 3)

Dg(r)=

where
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Conversely, we can recover the Cartesian position of
a point about corresponding features in the scene by
the inverse transformation of the camera perspective
transformation, g'(6) : R* — R®,
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where g' - g is the identity transformation of R°.
Additionally, we can develop an algebraic properties
associated with the perspective projection g(#) and
its Jacobian.

Property 1 : Jacobian matrix Dg(7) in (2) can be
factored into state (Cartesian position) dependent and
measurement (its image) dependent matrices,

Dg(n)=—T""(nA(9), ®)
where
T
I—( ) — Z (T_ Cl) Iz 0
§ 0 ZZT(T_ Cz) 12 I(r)
= R4><4

denotes a 4X4 diagonal matrix whose two diagonal
blocks correspond to the depth information missing
from the respective camera image plane and I,
denotes a 2X2 identity matrix. Note that whenever
7 is visible from both cameras (in front of them),
I(7) is a positive definite matrix.

We can further develop an algebraic relationship
between two points in work-space and their corres—
ponding image points.

Property 2 : Given that 0 = g(;f), it follows that

ACO(7—7n = —[(r(D—0)
A(O(7— 7 —N(»(9-90).
These properties of the projective transformation

afford the design of simple controllers, as we show
in section IV. (Proofs are shown in Appendix)

(6)

Il

III. Statement of the problem and the approaches

In this section we present a formal statement of
the problem of three degree of freedom relative posi-
tioning of a manipulator's end-effector and review
traditional approaches to the presented problem setting.
1. Statement of the problem

Suppose a distinguished point on a manipulator’s
gripper, r can be imaged by a stereo camera system,
0= g(r). Then the visual servoing task we wish to
address is: Given a desired points in stereo camera
image planes, 6;, and a robot controller, %, capable
of commanding arbitrary velocities of the gripper in
the Cartesian work-space,

r=u,
find a velocity control strategy, #( 8, 8, such that
g(r) i 0(1 .
This is finally zero disparity between gripper and

target points in images and implies the alignment of
an gripper with an identified target in work-space.

If we define 6,:= 8, — @ as the "visual” error,

then the error dynamics for such a system becomes

0., =g( r;) — g7 (7

0, = — Dg(» u (8)

Before presenting our control strategies we review
some well known methods of root finding and point
out these traditional techniques cannot be satisfac—
torily used to generate controllers in the present
problem setting.

2. Alternative approaches

There are two traditional algorithms for iteratively

solving root finding problems of the kind,

g(r) — gl ry)=0.

In the sequel we will distinguish between Newton
and gradient based variants of these solution. With
guarantees of convergence arising from well known
analysis one can employ Newton-Raphson,

r= Dg' (90, (9)
or gradient descent
r= Dg'(# @, (10)

where Dg' denotes the generalized inverse of the
nonsquare Jacobian matrix[9].

Of course there are numerous variants on these
schemes. Typically the gradient based descent tech-
niques exhibit slow convergence near the solution,
and so the Newton technique is generally preferable
since it gives more uniformm rates of convergence.
The convergence of both techniques is, of course,
dependent upon exact calibration. In the present
problem setting we are unable to implement either
(9 or (10) directly since we are missing the
Cartesian vector, . The straightforward fix would be
to replace »r with the "triangulate” Cartesian position
g (6) so that (9) and (10) become

r = Dg'(g' (0) 6.

r = Dg'(g' (0) 6,
respectively. But this seems to render the algorithms
still more sensitive to calibration and sensor error.

Recently, Hager, et al. proposed a robust visual

control strategy[11]. They precluded- a Cartesian
position-data expressly in their control law by the
desire to work solely in image plane coordinates
using a nonlinear observer that would estimate
gripper’s Cartesian position:

i

u
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r

[De(PI" (ky 0.+, [ 0. db)
u— M(0) 0,

where M(6) is a matrix function of the current
measurement of the gripper. This fixes sensitivity
problem in inverse transformation but raises new
problems: there are more dynamics than needed, and
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the stability of the overall system still remains
unproven. In the following section we propose a
visual control strategy without requiring any state
observer or inverse transformation, and we furnish a
stability proof for the proposed algorithm as well.

IV. A new "local” Newton and gradient methods

In place of the "global” controllers presented above
controllers (9) and (10), we present what may be
thought of as their "local” variants. These strategies
have the property that the controllers use fixed gain
laws based only on the desired set point.
Nevertheless, we are able to furnish as "global” a
convergence result for these as for controllers (9)
and (10) by exploiting the structure of the per-
spective map.
1. Control laws

The Newton type controller which results from
"local” approach takes the form

u=—A"(6,) K @, (11)

while the corresponding gradient algorithm is given
by

u=—AT6,) K 0, (12)

In these equations KeR*** is an arbitrary positive
definite diagonal gain matrix. Both of these presented
control laws are distinguished from traditional
approaches:

1) They are estimation free of the current position of
end-effector, so that we can eliminate a significant
source of calibration sensitivity.

2) They use a fixed gain on visual feedback error for
a given image plane target since A( 8, is a
constant matrix.

3) They are immune to the baseline calibratior error
since A( 8, depends upon neither ¢; nor ¢, the
camera positions as seen in (3).

2. "Global” stability analysis

The convergence of the Newton type controller can
be demonstrated by appeal to the Lyapunov function

swi=t r.T ATC0)AC B, 7.

where 7,:= 7rz;— r. The time derivative of vy
along the motion of the system defined is negative,
as can be shown using property 1 and 2

- 7. AT 0)A( 6)u
= 7. AT(0)A( 60K 9,
- 6. NN Ko,

0
as long as 7 remains in the field of view
throughout the motion, z,~T( r;— c¢;) >0. The con-
vergence of the corresponding gradient algorithm may
be demonstrated by appeal to the Lyapunov function
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for we have

ve=— r, u
r. AT 0) K 0,
=~ 6, (N K O,
<0
Again, we conclude that the closed loop system
converges regardless of any positional calibration
errors of either cameras, if the gripper remains
visible from both cameras throughout the motion.
3. The need for containment
The "global” convergence of 6, resulting from

any one of the algorithms (9), (10), (11), and (12) is
qualified by the assumption that the gripper must
stay "In front” of both cameras during its motion.
However, none of these algorithms assures this, and
as a result, the exact meaning of the conclusion must
be carefully examined. Fortunately, the systems in
question are all first order, and it immediately follows
that conservative estimates for the domain of
attraction for any of the algorithms can be derived
directly from the Lyapunov functions used in the
stability proofs. Specifically, a maximal Laypunov ball
may be found which lies completely in front of both
cameras, and it follows that any initial condition
starting in that ball will remain in front of the
cameras for all time, and thus, converge to the
desired goal.

V. Simulation results

A large sequence of computer simulation has been
performed to evaluate the relative performance of the
controllers of section IV against the more traditional
"Newton method” in the presence of camera
calibration error. As was noted in the previous
section, the proposed controller is immune to camera
displacement errors, and thus we will focus only on
situations involving rotational calibration error.

The simulation setup consists of a pair of cameras
on pan-tilt head whose optical axes are parallel and
perpendicular to the baseline as illustrated in Fig. 2.

Camera Position
Camera 1 . E—,—mj;]‘]
i
Camera 2 Target
"o
e

Visual Information

Fig. 2. Simulation setup.
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The separation between the cameras is chosen as
100cm. The "task” we wish to perform is to position
the simulated robot gripper at a point between the
two cameras, and 250cm from baseline. From the
point of view of the resolvability ellipsoid[10], the
stereo pair with parallel axes exhibits less resolva-
bility along the optical axis: that is, work-space
information recovery from the sensor space is more
sensitive to the camera calibration. In such situations,
particularly, miscalibration does the most potential
damage to the stability.

A complete study of the domains of convergence
for every possible type and magnitude of miscali-
bration would be near impossible to present due to
the shear volume of data required. Thus we choose
to present a systematic set of miscalibration
situations which covers a fairly significant region of
the space of possible miscalibration. In particular, we
will consider situations where the calibration data
represents cameras which are rotated from the actual
cameras about one of the principle axes, and we will
consider these in a pair-wise fashion(i,e, cameral is
rotated about z; by -5 degrees and camera 2 is
rotated about x; by 5 degrees and so on). Of the
possible 36 such configurations (two possible
direction of rotation and 3 degrees of freedom for
each camera) we will eliminate the symmetric cases
to limit ourselves to an evaluation of only 21 "types”
of miscalibration, each of which is evaluated over the
range of 0 to 30 degrees in increments of 2 degrees.
For each such case, 1000 different initial gripper
positions were uniformly placed within a range of
100cm from the desired target position, and the
percentage of trajectories which resulted in convert-
gence were measured for both Newton algorithm (9)
and the proposed local variants (11) of section IV. A
resulting trajectory was classified as converging if it
met the following criteria :

1) The position of gripper remains visible to both
cameras throughout the trajectory.

2) The final position arrive within lcm of the desired
target within 90 sec.

The control gain should be carefully chosen based
on practical consideration. In this simulation the
overall gains of both algorithms are comparable such
that the local dynamic behavior of both algorithms in
the vicinity of the target location are similar. The
simulation results are shown in Fig. 3. They
demonstrate that the Newton method begins to fail
when the magnitude of miscalibration approaches 6
degrees. In contrast, our newly proposed method
performs successfully up to 10 degrees of misca-
libration. Also, specific types of miscalibration result
is shown in Fig. 4, where both miscalibrated cameras
are rotated outward from the actual ones(i,e cameral

and camera 2 are rotated about —y and ¥ axis,
respectively). Although not explicitly showed in Fig.
3, the drastic increase in failure rates between 10 to
20 degrees were the result of total failure for the
case when both of the actual cameras were pointed
inward. And not surprisingly both methods showed
significant robustness with respect to rotations
around the optical axes.
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Fig. 3. Average volume of convergence counting
all 21 types of rotational miscalibration.
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Fig. 4. Number of converging points in a specific

type of miscalibration (both camreas are

rotated outward).

V1. Conclusion

We present a simple visual servoing control
algorithm for a three degree of freedom relative
positioning of a gripper using stereo vision system.
The presented controller does not resort to a dynamic
estimator or inverse transformation in commanding
gripper motion, distinguishing it from all previous
approaches. We have shown that the presented
control algorithm is globally stable regardless of the
positional calibration error of cameras. Even though
we cannot offer a formal characterization of its
robustness to rotational modelling errors, exhaustive
simulation results show it is robust in the presence
of significant miscalibration.

We have also ignored the problem of intrinsic
parameter calibration - focal length, lens distortion
effects, and so on. These are very important in
practice but (with the exception of focal length) hard
to model in a simple physically accurate form. Our
success in simulation suggests that the algorithm
may be robust against these phenomena, but clearly
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more analysis would be required to draw convincing
conclusions.

The presented work may provide a starting point
for the design of robust controllers for the more
generic problem of visually servoing the rigid
transformation (six degrees of freedom) describing
the gripper.
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Appendix : Proofs of algebraic properties
Proof of Property 1 : Dg(n) = —I{7) 'A(0)
Denote F(7, 0):=A(Or— 80 such that F(r,

g(7) =0. Using Implicit Function Theorem [11], the
Jacobian Dg(7) can be written as

-1
De(r)=—( Wr0)) el A1)

Since
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A.1) becomes
De(»=—T(»"1A(9).
Proof of Property 2 : A(®(7— D=—I(»H(6— 6) in
(6).
From A(6) and #6) in (3) A(®) and &) can
be written as

AH = A+D(o—- 0z A2)
CITZl
T
c 2
W) = 6O+D| & 2z )o-0 A3)
CZT 29

where D(a) denotes the diagonal matrix whose ith
diagonal elements are a, and Z denotes

ZlT

7= 2

22

e RY3

N NN
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Then using A.2) and A.3) we have
ACO(r—n
=A(Or-A(Or
=A(0) r—[A(O)+ D(0—- O Z]r
=O—O—D0-OZr

c 2
T ~ ~
=D(| € %1 (0-6)-DzZn(o- 0
Cy 23
T
Cy 29
=—1(A(0- 0).

Similarly, A(@(7— »=—I1({2(0—6) in (6) can be
shown as

AO)(7— 7

—AD 7T A r
=[A(D)-D(0- 9 Z) 7~ A(O)7
=K O)-u0)-D(6—OZr
=—I(nN(0—0).
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