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I. Introduction

As the nuclear research reactor, TRIGA MARK III,
is obsolesced and life-ended, nuclear reactor and
other facilities are to be decommissioned and dis-
mantled[1]. In the TRIGA MARK I, the radiation is
emitted from the reactor core surrounded by the
water—filled reactor pool (7.62%X3.04x762m) and the
inner wall of the reactor pool is contaminated by the
frradiation during rector operations. The inspection of
the contaminated level of inner wall surface is,
therefore, the first step in decommissioning process.
For performing the inspection tasks under such a
hazardous environment, an underwater wall-climbing
robot(UWR) is developed(2] and this robot can
navigate autonomously along the surface of inner
wall while inspecting the contaminated level with the
radiation detector installed within the robot. The
conceptual inspection procedure of UWR in TRIGA
MARK Il is shown in Fig. 1.

For underwater robotic vehicles(URVs), conven-
tional control methods developed based on linear
systems are not effective because of nonlinear and
uncertain factors such that the vehicle has nonlinear
dynamic behavior, hydrodynamics of the vehicle are
poorly known and may vary with relative vehicle
velocity to fluid motion, a variety of unmeasurable
disturbances are present due to multi-directional
currents, and the centers of gravity and buoyance
may vary during operation. Nonlinear feedback
control methods[3-5] were developed and have shown
the robust tracking performance under parameter
uncertainty. As more efficient and reliable counter-
move, the intelligent controller with learning capa-
bility may be a good choice for controlling URVs
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under uncertain operating situations such as explo-
ration under the sea, etc. Learning control method by
Yuh[6] was applied to a URV and showed good
control performance.

Research
Reactor
TRIGA
MARK il

Fig. 1. Inspection procedure of UWR in TRIGA
MARK IIL

In this paper, a robust nonlinear predictive
controller(RNPC) is developed for the motion control
of UWR whose parameters and actuator dynamics
vary according to operating conditions. This
controller has the globally stable property under a
class of uncertainty and shows good control
performance.

II. Underwater wall-climbing robot for inspection
The overall operating system of UWR in the
nuclear research reactor is divided into two units: the
Remote Operating Station(ROS) and the UWRI2]
The ROS monitors the UWR's current status and
working environment, and commands the moving
path to UWR. It also receives and analyzes the
inspection information transferred from UWR via
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Fig. 2. Underwater wall-climbing robot.

tether which includes a communication line. UWR
receives the command and power signals from ROS
and performs the inspection tasks moving on the wall
surface autonomously by incorporating control sys-
tems, various sensors, and actuators. As can be seen
in Fig. 2, UWR has five thrusters driven by
propeller. A main thruster is installed in the back of
UWR and enables UWR to move forward and
backward directions. Two thrusters are equipped in
the front and rear positions of the UWR for rotation
and position recovery. The rest two are put in both
sides of UWR for adhering the UWR onto the
vertical wall surface. The UWR has various sensors
such as inclinometers, a laser localizer, and ultrasonic
sensors. It can acquire its absolute position and
deviation from moving path by inclinometers and
laser localizer[2] and identify the obstacle existence
by ultrasonic sensors. Using a radiation detector
equipped within the UWR body, the radiation
inspection tasks are performed moving along the
prescribed path on the wall surface. A CCD camera
and lamps are installed in front of UWR and these
sensors provide the necessary information to the
monitoring of ROS. The control systems are installed
within the inner box of UWR for double protection of
water leakage. The detailed specifications of the
UWR is presented in Table 1.

The dynamic motions of UWR during inspection
tasks on the wall are divided into two motion types:
translational motion along and turning/rotational
motion on the vertical wall. In this paper, the
translational motion is only considered and is
represented as follows[31{61[7]

Mx(D+ Cpx(Dlx(Dl= F (D ®

where x is vehicle position, t means time, M is total
mass which is sum of vehicle mass and added
massl7], Cp drag coefficient, and Fr thruster force.
Thruster dynamics usually affect the vehicle
dynamics especially at low velocity and its dynamic

characteristic is highly nonlinear. Thruster dynamic
system is divided into two types, the torque-
controlled thruster system and the velocity-controlled
thruster system[3]{6]1[7].

Table 1. Specifications of UWR.

Length of UWR 750 mm
Width of UWR 550 mm
Height of UWR 300 mm
Main Hull Length 500 mm
Main Hull Width 450 mm
Length of Thruster 300 mm
Diameter of Thruster 80 mm
No. of Thruster 5 EA
Material Aluminium, Acryl
Weight in Air 47 kg
Weight in Water 0 kg
Tether Length 25 m
Tether Diameter 22 mm
No. of Wheel 4 EA
CCD Camera 1 EA
Lamp 2 EA
Laser Localizer 1 EA
Inclinometer 2 EA
Radiation Detector 1 EA
Ultrasonic Sensor 5 EA

The torque-controlled thruster system has a linear
steady-state relationship between torque and thruster
force, but its time constant depends on the propeller
angular velocity. At high velocity, thruster dynamics
can be ignored since the associated time constant is
much smaller than that of vehicle dynamics. At low
velocity, however, the effect of thruster dynamics on
the overall vehicle dynamics becomes significant.
Torque-controlled thruster dynamics are described as

8= Bu(d — aAD| | (2a)
F (D= C2(D12(D} (2b)

where £ is the propeller angular velocity, « is the
control input, ¢ and A are constant parameters, and
Cr is a proportionality constant.

The velocity-controlled thruster dynamics usually
have a much smaller time constant than the vehicle
dynamics and therefore, the thruster dynamics can be
ignored in the vehicle control system design.
However, a nonlinear relationship exists between the
propeller angular velocity and the thruster force.
Velocity—controlled thruster dynamics are expressed as

T, 2AD+2A)= u,(2) (3a)
Fr()= CrAH|AD| (3b)
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where 7T, is a time constant and #, is a servo

control input representing a reference angular
velocity. The dynamics of servo velocity control loop
as in (3a) are much faster than that of the vehicle.
Thruster force Fr is proportional to the square of
the angular velocity as can be seen in (2b) and (3b).
The proportionality constant Cr in (2b) and (3b) is
unknown and changes for forward and backward
motions due to the thruster configuration. The value
of Cr is to be obtained experimentally through

characteristic test of thruster dynamics. In this UWR,
the velocity-controlled thruster systems  were
established and hence, (1) and (3) are used in the
control system design.

II. Robust nonlinear predictive controller for
UWR

The concept of predictive control was introduced in
the late 70s[8] and has received great attention
during 20 years. Predictive control has a strategy
such that at current time, forecast the process
outputs over a long range time horizon, set up the
several control scenarios that drive the future plant
responses to track the reference responses, and select
the best candidate as a control action and apply only
present control to the plant. Predictive control has
shown good control results for the systems with
variable parameters, variable dead time, and model
order change[9-11]. Most of predictive control
researches have, however, been developed based on
the linear systems[12]. Lu[13] extended the predictive
control concept to continuous nonlinear control
system and evaluated the closed-loop stability and
robustness. He also showed one useful property of
NPC such that the system where existing nonlinear
feedback controls are not configured can be dealt
with this controller.

The predictive control concept of nonlinear systems
is similar to that of existing predictive controllers
based on linear systems, i.e., control system predicts
the future response of the system based on the
prediction model obtained from appropriate functional
expansions and then, computes the control law
minimizing the local difference between the predicted
and desired responses.

The UWR dynamic equation as represented in (1)
is rewritten as follows

x=Ax)+gu (4a)

y=x (4b)

where x is a state vector as x=[x x]", f is the
nonlinear function as f( x)=—(Cp/Mxlzl, g is the
input gain with positive sign defined as g = Cr/M,
the control input u is defined as #=QIQl, and y is

R - KiSst - NABISSt =2A1 W4 A H6z 199812

the output measured by sensors. In (4), x=M
(Cc R",n=2) which is some connected set
containing the origin and u={C R™,m=1) which
is a compact set which defines the admissible control
inputs. The functions f and g are considered to be
smooth with respect to their arguments in M and
also g is bounded away from zero. Then, the
following assumption for systern model in Eq.(4a) is
introduced.

Assumption 1 @ For any w=U and finite intial
condition, the state trajectories are uniformly bounded
for all t=[0, T1.

For a small A, a future output state x(¢+h) can be
expanded by Taylor series[13] as

x(t+h)=x(t)+ha‘c(t)+%2 (-, (5)

In (5), x(t++h) is now approximated by expanding
the series to the order of the system, in this case,
the system order is 2. Then, the highest order
differentiation term in right hand side is replaced by
the dynamic equation as in (4a) and the resulting
expression is as follows

x(t+ h)Ex(t)+hJ&(t)+%z(f+ gu). 6)

For the validation of Taylor series, the prediction
time interval, h, should be small but, as will be seen
below, this value need not to be small in the
formulation of control input[13]. The prediction time
interval has a role of tuning parameter which adjusts
the closed loop dynamics and also has that of
controller gain.

At this point, we make the following assumption.

Assumption 2 : If xa()=[xa(t) x,(H]" is a reference
state, then xq(f) satisfies the system in (4a) with
some bounded control «*(§eU for all r=[0, T] such
as

ia=Rx)+tgu®.

Then, the future reference output trajectory xa(t+h)

can be expanded as

x4 0t h)=x,(D+h a’c,,(t)+%2 x4(9). (7)

Control objective to be minimized by the feedback
control u(t) is as follows

K, t)=—%{ ((t+ B — 2 (t+ )2+ A u(D?) (8

where A is an weighting factor penalizing the control
input variation. In the implementation of NPC, 4 is
usually set to zero.

The optimal value of u(t) minimizing the control
objective of (8) should satisfy the following condition,

(k. D _

By manipulating (9) with (6) and (8), the control
input u(t) is obtained as follows
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2

2 & : i’
u(t):—ﬁ[x(t)+hx(t)+7f
2
( 9 g) + A
— 2 (t+ ). (10)

When (7) is substituted to (10), the control law is
rewritten as follows

w(d) =— h_?i [e(t)+hé(t)+%2f
(5s) +
) an

where e and e are error and error rate, respectively
and they are defined as e(H)=x(H— x,(f) and

e(D=x(— x4(D.

When A is zero, the first term in right hand side
_2 1

nt g’
time interval h now becomes the controller gain. If A
decreases, the overall controller gain increases and a

of (11) can simply be and the prediction

large control input is produced for a small tracking

error. Otherwise, if A increases, the case is reversed.

If the system functions f and g are known exactly,
the error dynamics obtained by inserting (11) with A
=0 into (4a) is expressed as follows

22 A(H=0. (12)

As can be seen in (12), the prediction time interval
is now in charge of the error dynamics. Because A is
always positive( 0<kh{o), the error dynamics is
stable and converges to zero as t—oo, while error
dynamics have always the damping ratio of 0.707
regardless of the value of A. As h is smaller, the
characteristic poles of error dynamics are going to
farther left side in the Laplace domain and hence, the
speed of error convergence is being more increased.
However, the controller gain increases as h decreases
and hence, the large control input variations occur.
This may generate unnecessary control input
oscillations which result in large power consumption
of actuator system. Therefore, the proper value of
prediction time interval is to be selected from the
consideration of both conflicting conditions.

When the parameter uncertainty exists in the
system functions, the error dynamics have a slightly
different form. In this case, we do not know f and g
Then, the

control input #(#) based on 7 and g with =0 is

é(t)+—i «H+

but the estimated functions, 7 and g .

wH=— hlz -
2 g

The plant dynamic equation with parameter uncer-

[e(t)+hé(t)+%2 ?——’52 56,,] (13)

tainty may be represented as
W D=f+gu=(F+4P+(g+42u

= f+ gu+ d(1) (14)
where d(f) = 47+ dgu(p is the modeling error due to
parameter uncertainty. Substituting (13) into (14)
makes the error dynamics become

22 (D =d. (15)

Comparing (15) with (12), the error can not con-
verge to zero when parameter uncertainty exists, but
is bounded (by Assumption 1), and the tracking
performance is degraded according to the magnitude
of uncertainty d(¢).

In order to cope with uncertainty problem, instead
of trying to know the exact form of f and g, we
estimate the uncertainty bounds F and A for f and
g, respectively such as

lf—A<F, Vi (16a)

é(:)+—i (D) +

B"lé—ﬁsﬂ, Vit (16b)
where 2=V gy &min and 8=V g/ &mm and

the control input is modified so that u is sum of two
controls such as

W)= u (D+ u (2 an

where u. is the control input based on # and g as
in (13) and us is called the supervisory control.
Let u ; be the control input when f and g are

known exactly and this is the same form as in (11).
When the control input u in (17) with both adding

and subtracting the control input « . is inserted to
(4a), then the error dynamics become

22 e(D=g( 7.(0—u D+ u,(D).(18)

(18) can be expressed by a canonical vector form
as

é(t)+—i oD+

e=Ae+ b n,—u'tt+ u,) (19)

where e= [e ¢]7, b= [0 g7, and

a=[ % 4
B h
Define the Lyapunov function candidate such as
V== e'Pe, P = P' >0 (20a)
and the matrix P satisfies the following condition
ATP+PA=—Q , Q> 0. (20b)

Now the task is to find %, such that V<0. By
differentiating the (20a) with respect to time and by

use of (20b), V is represented as

V———7 e'Qe+ e P 4.~ uD+ e Pbu. (2D



776

In (21), the term, #.— u ., can be represented, by
use of (11) with A=0 and (13) , as follows

g u == {(1-E Jeh+het)
Tg

2

- ;ed(t)]}+(§—~§). 22)

The last term in right hand side of (22) is
expressed as

L4444
=—L§(1—§)f+—1§§(f—}>. 23)

In the above equations, f can be expressed as
7+ (f— P and thereby, (23) can be made.

The magnitude of (22) can be bounded as

[ ac— u ;,S | &Cl lim (24)
where | | = —{(1= 87 )le(d+hé(d)
9 g

2 -
-4 xd(t)|}+—1A(1— B NA+L R,
£ &
With (24), the following inequality for V can be
satisfied,

V-1 e"Qe+| e"PH | 4l ,+ e Pbu. (25
If we select us such that

u=—sgn( e PB)| u, (26)
where the function sgn(s) is 1 when s>0 and is -1
when s<0. The resulting equation of time derivative
of V with (25) and (26) becomes

V< — —% e Qe. 7

Since @ is positive definite, ¥V always has a
negative or zero value, and this means the Lyapunov
function V in (20a) is a non-increasing function.
Hence, e is uniformly bounded if initial error is
bounded and this means e € L .. From (26) and (24),
us is uniformly bounded because 7, 2, x4, and e
are finite. The boundedness of f and g are deduced
easily from assumption 1 with smoothness of f and
g un., and wu: are also finite by assumption 1.
The ¢ in (19) is uniformly bounded because A,
e, b u, #.,and u' are finite and thus e€ L ..

By integrating both sides of (27) from =0 to t=00,
the following expression can be made

fom o0 TQe(Ddr < 2L V(0)— V(w0)]< co.

From the above equation, e is square integrable
and hence, e €L». Because e€ Lo {)L, and e<

RIO - KISt - AVEHESt =2K R4 K63 198 12

L, by the Barbalat’s lemmall4], it is concluded that
1}_{2 e(H=0.

From the above result, the NPC with supervisory
control drives the nonlinear system which has
parameter uncertainty to be stable and also it can
perform the asymptotic tracking. In the calculation of
the term eTPb, it is not required to know the exact
value of b which includes an uncertain input gain.
Just knowing the sign of b is sufficient for
calculating the term e’Pb and hence, the function
sgn can be easily calculated.

As can be seen in (26), the supervisory control
includes the discontinuous function. If the supervisory
control can provide the discontinuous values with
infinite frequency, the system controlled by (13) and
(26) will, indeed, be stable and show perfect tracking.
When the above control inputs are applied to the
motion control of UWR as represented in (4), the
control input oscillations, which are so called control
chattering, are appeared due to the sampling time
which delays the infinite-frequency change of
discontinuous function. This oscillation is a serious
problem in the control system implementation because
it may induce some fatal effects such as excitation of
unmodeled dynamics and actuator damages[15]. In
order to circumvent this problem, the supervisory
control is modified as

—sgn(s) | ud
"“(S/ slim) I &cl lim

o> sum - (98)

Sl S fim

U=

where s = ' Pb and sim is the boundary value given
by a designer.

With the supervisory control of (28), the tracking
error of the system with uncertainty is not driven to
zero but is driven to the bounded region determined
by Siim.

IV. Simulations
In order to investigate the performance of robust
NPC, simulation tests are performed. In the vehicle
dynamics as represented in (4), the parameters M
and Cp are estimated by experiment and these values
are M=70Kg and Cp=14Ns/m’ In reality, these

values are varied according to the vehicle’'s moving
condition and local fluid flow. The characteristic test
for thruster dynamics is also performed and the
proportionality constant is estimated from the
experimental data. The estimated value of Cr is
0.00167N/s? for forward moving and 0.00203N/s® for
backward moving[2].

For the representation of the effect of parameter
uncertainty, the UWR's parameters are varied in this
simulation such as

M(H =85+ 35sin(| x| (29a)
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Cp(£)=25+15sin( xl#) (29b)

C r(H=0.0016740.0005cos (8 (forward) (29¢)

C (8 =0.00293+0.0005c0s () (backward) (294)

For the operation of UWR, the uncertainty bounds

of M and Cp can be acquired from experimental and

analytical analyses, but the uncertainty bound for

thruster proportionality constant Cr is difficult to

obtain. Therefore, the uncertainty bounds of M and

Cp are incorporated into the control system design

and the wuncertainty of Cr is not considered by

assuming the estimated value of Cr is accurate. The

uncertainty bounds of F and A are calculated such
as

— Mmax
B—. Mmin

=18 o= €l #*

where Mmax and Mpin are maximum and minimum
values of total masses, respectively and these values
are Mpao=120 and Mnmin=50. Cpmax is the maximum
value for the variation of Cp and set to 40. When
(29) are examined carefully, the variations of
parameters in the vehicle and thruster systems are
large. In reality, the variations of parameters are not
same as in (29). In this simulation, however, the
large uncertainty is configured in order to verify the
efficiency of the controller.
The reference path of an UWR is prescribed as

xd(t)=A[1—cos(2—77f t)]

where A=0.25m and 7T is 10sec. In order to protect
the thruster from overload damage, the limit of
angular velocity is determined from thruster
characteristic test. The maximum angular velocity of
propeller is limited by 70rad/s and hence, the limit of
control input is |ul <44100rad”/s>. The limit of
control input is nine times that of square of angular
velocity of propeller because the angular velocity of
thruster system is measured by the encoder equipped
on the back of the motor and the reduction gear of
ratio 3:1 is installed between the motor and the
propeller{2].

For comparison of the tracking performance, PI
controller, sliding mode controller[15], and robust
NPC are implemented in this simulation. Fig. 3
shows the result of PI controller when the plant
dynamic simulation is configured by the estimated
parameter values. As can be seen in Fig. 3, the
control performance of PI control is very satisfactory
regardless of the nonlinear dynamic characteristics of
the UWR if the plant parameter values are estimated
accurately. However, when the parameter uncer-
tainties such as (29) exist, the tracking performance

is poor and unacceptable as shown in Fig. 4. In order
to cope with the large parameter uncertainty, the
sliding mode controller as the most compromising
controller for nonlinear systems control is applied and
Fig. 5 shows the result of sliding mode controller.
The sliding mode controller can drive the UWR to
track the reference path very well under the large
parameter variation. However, the uncertainty in the
thruster dynamics, which is not taken into account in
the controller design, makes the sliding model
controller not track the reference path perfectly. The
tracking performance by the sliding mode controller
is improved remarkably when it is compared with
that by PI controller.

ForM=70kg,C  =14N/m
06
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o
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Fig. 3. Tracking performance of PI controller
when the estimated parameter values are
used in the simulation.

A nonlinear predictive controller without supervi-
sory control is appled and the result of this controller
is depicted in Fig. 6. The NPC controls UWR fairly
well but the tracking performance is degraded when
compared with sliding mode controller because the
parameter uncertainty is not considered. Fig. 7 shows
the result of tracking performance when the robust
NPC is applied to the UWR’s motion control. In Fig.
7, the results of tracking performance by the sliding
mode controller and NPC are also depicted for
comparison. The prediction time interval, h, is given
by 1 sec. and the boundary value, Sim, is set to
0.0001. In the robust NPC, the supervisory control
compensates the effect of parameter uncertainty and
thereby, the tracking performance is improved remar-
kably. It is observed that the tracking performance is
improved as the boundary value is reduced, but when
the boundary value is extremely small, in this
simulation $;»,<0.000001, a few oscillation with small
amplitude is appeared in control input. From the
results of Fig. 7, The tracking performances of the
robust NPC and the sliding mode controller are
similar and satisfactory. It is said, therefore, that the
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robust NPC is a good candidate in controlling the
uncertain dynamic motions of UWR.
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controller for a UWR with parameter
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Fig. 7. Tracking performance of robust NPC for
a UWR with parameter uncertainty.

V. Conclusions and further study

In this paper, a robust nonlinear predictive con-
troller which is a nonlinear predictive controller with
supervisory control is proposed and verified in the
simulation experiment of an underwater wall-climbing
robot developed for inspection of the contaminated
wall surface in the nuclear research reactor. NPC has
a general characteristic in that it can be applicable to
the control problem where the recent novel
approaches for nonlinear feedback control are not
applicable[13]. For perfect tracking for the parameter
uncertainty, the supervisory control is involved in the
design of NPC. This robust controller can cope with
the wuncertain nonlinear system but produces the
control chattering. In order to remove the control
chattering, the supervisory control is smoothed out
within the prescribed boundary region and thereby,
tracking error is guaranteed to be uniformly bounded.
Simulation results show the good tracking per-
formance of this controller and conclude that the
robust NPC is a good candidate in controlling the
motion of UWR. In the further study, multidi-
mensional tracking operations such as rotation and
position recovery from external disturbances are to
be accomplished with this controller and the

experiment of UWR in the reactor pool will be
carried out. At present time, the communication
system and the structure of ROS are being

constructed for experiment and the results of
experiment of the UWR with this controller will be
presented in the near future.
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