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ABSTRACT

The influences of the coupler consisting of stiffness and mass between neighboring two
spans on mode localization are studied theoretically, and the results are confirmed by
numerical examples., The mass of the coupler makes a structure sensitive to mode
localization especially in higher modes while the stiffness does in all modes. A new type of
delocalization phenomenon is observed for the first time in some modes for which mode
localization does not occur or is very weak although structural disturbances are severe. A
spring-mass system consisting of two substructures and a coupler connecting them is
considered in the part of analytical study. As example structures for numerical analysis,
simply supported continuous two-span beams with a coupler having a rotational stiffness
and a mass moment of inertia on the mid support are considered.
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icentical substructures connected by couplers,
shaping into periodic structures. Periodically
sliffened long plates, continuous girder bridges,
11 ultispan rahmen bridges, etc. are well known
llhear periodic structures. And cooling towers of
1 nuclear power plant, bladed rotors of a
L.irbomachinery, etc. may be the cyclic periodic
slructures, However, in real structures, no
substructures will be perfectly identical since no
ome can be free from manufacturing errors and
dimages. In the area of structural dynamics, a
pienomenon that any structural disturbances
ir ake the specific part of a free vibrational mode
h.ave significantly larger deflection relative to the
rest of it is referred to as mode localization.

In solid-state physics, the localization pheno-
rrenon of electron field in disordered solid was
" who shared the
1877 Nobel Prize in physics for his work.
H)dgesm was the first to recognize that the
wave localization may occur in the disordered

fi'st observed by Anderson

periodic  structures and it leads to mode
lo:alization, After his work, various structures
t:ve been considered and many methods have
teen proposed to discuss the characteristics of
Bouzit and
Pierre'”. Lust et al®”, Kim and Lee'™). It is
vi2ll known that under a condition of weak
ccupling, the mode shapes undergo dramatic

. . . 3
rmoade localization (Pierre et al.”®
(4)

changes to become strongly localized when small
disorder is introduced.

The present study is an attempt to prove that
taz mass, as well as the stiffness, of the coupler
exerts important influences upon mode localization
ard weak coupling conditions. To accomplish this
ctjective, a dynamic analysis of a spring-mass
system is performed in the theoretical back-
ground section, In the numerical examples, mode
loc alization of simply supported continuous two-
span beam as a most simple periodic structure is
analyzed under the wvarious coupling conditions,
and the results of the theoretical approach are
coifirmed.

2. Theoretical Background

In this section the characteristics of mode
localization of a simple spring-mass system
consisting of two substructures and a coupler is
discussed qualitatively. Figure 1 shows the
structure considered.

The eigenvalue problem for free vibration
analysis of the structure may be written as

{'k‘+k3 0 -ky '”yll jol

| 0 ky + kg — Am, -k, {r2t=10

| -k ks ky oy + ks - ams |1y5] o]
(1)
where A denotes an eigenvalue or the square of
circular natural frequency w, of the structure.

A ratio of free vibration amplitude of the two
substructures can be a measure of degree of
mode localization. The displacement of the
coupler y3; in Eq. (1) is eliminated first to get
an equation for the ratio, which becomes

(ky +ky + g - '1’”3)('1“) - '1(2))_ (k_sz_ ﬁ]

mm,

1 1
"‘a"( 2 AJ (2)

my m)y

where A and A?® are the eigenvalues of the
substructures 1 and 2, respectively:

).(l)=(k|+k3)/ml, ,?'(z)z(kz'f'k‘z)/mz (3.4)

Multiplying each side of Eq. (2) by /7y,

after simplification, results in

(r=s)r-s;)=ar (5)

ks% _l —ij }Coupler
2 13

Substructure 1 y,l_ m, m,
hE k2

Fig. 1 Simple structure constituted with two sub-
structures and a coupler

—I 2} Substructure 2
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where r=y,/y, is a measure of mode

localization and

oo _kem
k| ? ky m, (6,7)

Sl = -
and

m

(ky + b, + kg — A JA® - @)
Kk,

o=

(8)

Equation (5) is very useful in discussing the
influences of the stiffness and the mass of the
coupler on mode localization phenomenon. The
left-hand side of Eq. (5) is a parabolic function
having roots at s, and s;, and the right-hand
side is a line passing origin with slope a. Figure
2 shows the two curves.

Assuming that the two substructures are
identical, /1“)=/1(2), the ratios and the slope are
nn=—1. n=—1 and a=0, respectively. This
indicates that the vibration amplitudes of the
two substructures are equal to each other and
the corresponding modes are not localized at all.
Small disturbances making the substructures
different from each other make the vibration
ampilitude different, resulting in mode localization.
Especially, when 7, and 7, are close to zero
and infinity, respectively or reversely, corres-
ponding modes are perfectly localized ones,

Variations of 7; and 7, are closely related to

the variation of . If some disturbances produce
significant variation in @, the degrees of mode
localization drastically changed and so it can be

f“

h i h=CsXe-s)

fi=ar

5 >
S\ \/sl r, r

Fig. 2 Parabolic curve having roots at s, and s;.

and a line passing origin with slope «a
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said that the structure is very sensitive to mode
localization.

A case of my=0is discussed first and the
structural disturbances are realized by the
variation of difference of the eigenvalues of the
two substructures, /Id=/1“) —A?_ As one can

see in Fig. 2, it is obvious that when
ks ksky> > 1, the small wvariations in the

eigenvalues, 0<]|A4/ << 1, may lead to the
significantly large @, and consequently #; and
o go to zero and infinity, respectively or
reversely, That means drastic occurrence of
mode localization. The condition of ks/ kyky

>>1 is equivalent to the weak coupling
condition most popular precondition of mode
localization.

Considering the term of Amg, an additional

pre-condition for the drastic occurrence of mode
localization may be derived. As one can see in
Eq. (8), if the condition of Amg > > k3+ ky+ ks
is satisfied, the small changes in the eigenvalues
lead to the significant change in . Therefore
the large mass of the coupler and/or the large
eigenvalue of the structure make the structure
sensitive to mode localization and the coupling
weak.

Considering the mass of the coupler, an inte-
resting phenomenon of delocalization can be
observed. When A3+ A&y + ks— Am3 =0, correspon-

ding mode is not sensitive to mode localization
although the classical weak coupling condition,
ks [ kaky > > 1, is satisfied. That is, if a natural
frequency of the structure is close to that of the
coupler, corresponding mode is a delocalized one
for which mode localization does not occur or is
very weak although structural disturbances are
severe. The natural frequency of the coupler,

., is the square root of the eigenvalue of the
coupler given by A= (k;+k+ ks)/ my. This
delocalization phenomenon caused by the mass

and stiffness of coupler is observed in this study
for the first time.
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3. Numerical Examples

Here, influences of the stiffness and the mass
o: the couplers on mode localization of multispan
bzams are verified, and the results of the
previous section are confirmed. As example
stractures, simply supported continuous two-span
be=ims  with couplers consisting of rotational
stifness and mass moment of inertia on
supports are considered. Figure 3 shows the
geometry of the example structure. The Young's
mcdulus of the beam is E=207 Gpa, the mass
density  p=7750 kg/m®, and the moment of
irertia. I=2.54 x 10" m®*. The span lengths are
[ =5L=0.3m in the

stractures,

undisturbed perfect

"“he structural disorders or disturbances are
reclized by introducing the length variation into
tte last span in the example structure. Finite
elament method is used for dynamic analysis of
tte example structures. The rotational stiffness
and the mass moment of inertia of the coupler
are represented by the nondimensional quantities
a. K.=K.[EI and J,=6]. /| MF where K,
and J. are the rotational stiffness and the
mess moment of inertia of the couplers,
respectively, EI is the flexural rigidity and !/
tte span length of the perfect structures.
Dzzrees of mode localization are computed and
cornpared for various coupling conditions.

In this study, to facilitate discussion for mode
localization of multispan beams, a measure of the
deyree of mode localization ( DML) is defined

here as

IML=(m~m)l(m-1) (9)
J. K.
YR
W 11 354%— 12 —&—

Fis:. 3 Simply supported continuous two-span beam
with a coupler of the rotational stiffness and
mass at the mid support

where m is the total number of spans and m,
means the number of spans in which vibrations
are confined (1< m.<m). Here, m, can be

computed by

m 2 m -1
= =2
mc = i i
(Zy ] (Zy ) (10)
where 7, is the absolute value of the maximum

amplitude associated with the :7-th span. When
all spans except one have no vibrations,
corresponding rﬁode is extremely localized one
and m.=1. When all spans have the same
vibration amplitudes, corresponding mode is not
localized at all and m.,=m . If the mode Iis
extremely localized, then DML =1, and if the
mode is not localized at all, then DML=0.

The influences of K, on mode localization are
studied first. Localization curves in Fig. 4(a)
show the {ypical localization behavier and
influences of T{c. on mode localization. Degrees
of mode localization increase with Increasing

disturbance, and with increasing K..

The influence of /. differs from that of K,
and the localization curves in Fig. 4(b) show it.
Degrees of mode localization increase with
increasing length disturbance in the second span,
number, and with
increasing the mass of the coupler. That is, as
predicted in the

with increasing mode
section of theoretical
background, the mass of coupler makes the
coupling weak and the structure sensitive to
mode localization, that influence are more
pronounce in higher modes.

The combined influences of the stiffness and
the mass of the coupler on mode localization are
also studied. Localization curves plotted in Fig.

4(c) show the combined influences of K. and

_]c on mode localization. Degrees of mode

localization decrease with increasing mode
number until fifth mode, but after that mode

they increase abruptly with increasing mode
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Fig. 4 Influence of the rotational stiffness and the
mass moment of inertia of coupler.
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number. The fifth mode is delocalized one, and
its frequency is close to the coupler’s frequency,

w.= 1780 Hz . The delocalization phenomenon is

more dramatic in cases of K,=1000 a:d

J.=1.0. The behavior of mode Ilocalization is

governed by T{C for lower modes but by _]L. “or

higher modes under the condition that the
modes are far from the localized ones. These
results are consistent with the results of the

previous section of theoretical background.
4. Concluding Remarks

In this work the influences of the stiffness and
the mass of the coupler on mode localization
have been studied by the theoretical approach
and the numerical one. The consistent results
have been drawn in both approaches. Some
important conclusions drawn in the course of
this work can be summarized as follows:

(1) Degree of mode localization varies with the
disturbances introduced into the structures.

(2) The sensitivity to mode localization increases
with increasing stiffness of couplers.

(3) The sensitivity to mode localization increases
with increasing mass of coupler and with
increasing mode number.

(4) The mass and stiffness of coupler causes a
delocalization phenomenon for some modes for
which mode localization does not occur or Is
very weak although structural disturbances are
severe, The delocalization frequency is equal to
that of a coupler.

(5) The behavior of mode localization is
governed by the stiffness in the lower modes
but by the mass in the higher modes, and the
delocalized modes are observed between them.

The first two results agree with those of
previous researches in which the characteristics
of mode localization and the influences of the
stiffness of coupler are studied. The last three
results are observed in this study for the first
time. The results of this work may give very



Mode Localization in Multispan Beams with Massive and Stiff Couplers on Supports

useful guide to design a structure insensitive to
mode localization.
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