Study on the Synthesis of Polycarbosilane as a SiC Precursor and its Comparative Property

탄화규소의 전구체로서 Polycarbosilane의 합성 및 물성 비교 연구

  • Moon, Kyo-Tae (Dept. of Fine Chemicals Eng. & Chem., College of Eng., Chungnam National Univ.) ;
  • Min, Dong-Soo (Dept. of Fine Chemicals Eng. & Chem., College of Eng., Chungnam National Univ.) ;
  • Lim, Heun-Soung (Chemical Analysis Laboratory Korea Research Institute of Chemical Technology) ;
  • Kim, Dong-Pyo (Dept. of Fine Chemicals Eng. & Chem., College of Eng., Chungnam National Univ.)
  • 문교태 (충남대학교 정밀공업화학과) ;
  • 민동수 (충남대학교 정밀공업화학과) ;
  • 임헌성 (한국화학연구소 분석실) ;
  • 김동표 (충남대학교 정밀공업화학과)
  • Received : 1997.07.07
  • Accepted : 1998.02.13
  • Published : 1998.04.10

Abstract

Polycarbosilane(PCS) as a SiC precursor was synthesized from the rearrangement reaction of polydimethysilane(PDMS) in an autoclave, which prepared by dehalocoupling reaction of dichlorodimethylsilane. After fractional precipitation into three fractions in n-hexane-methanol mixture, they were characterized by FT-IR, NMR, GPC, TGA/DSC and XRD, and compared with the commercial product. We found that the molecular weight distributions of the PCS depended on the reaction pressures, temperatures and the reaction times, and affected thermal property and ceramic yield of the polymer. The monodispersed PCS containing less amount of oligomers and nonsoluble products was prepared by reaction of PDMS at $420^{\circ}C$ for 10 hrs, and it also gave the greatest amount of medium molecular weight($M_n=4,000$) fraction.

Dichlorodimethylsilane의 탈염소중합반응에의해 polydimethylsilane(PDMS)을 합성한 후 가압 반응기내의 재배열 반응에 의해 탄화규소(SiC) 전구체인 polycarbosilane(PCS)를 합성하였다. 합성된 PCS는 n-hexane과 methanol의 혼합용매를 사용한 분별 침전법으로 분자량에 따라 세 분율로 분리한 다음 FT-IR, NMR, GPC, TGA/DSC와 XRD를 사용하여 분석한 뒤 상업용 고분자와 비교하였다. 또한 합성되 PCS의 분자량 분포는 반응 압력, 반응 온도 및 시간에 대한 의존성을 가지며 분자량에 따라 고분자의 열적성질과 세라믹 수율이 달라짐을 알 수 있었다. PDMS를 $420^{\circ}C$에서 10시간 동안 반응시킬 때 비교적 단분산 분자량 분포를 가지며, 저분자체와 비용해성 PCS가 최소로 생성되고 우수한 가공성을 가진 중간 분자량 분포($M_n=4,000$)PCS가 최대로 얻어졌다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. Chem. Rev. v.90 L. Hench;J. K. West
  2. Better Ceramic Thourgh Chem. Ⅰ-Ⅳ D. E. Clark;D. R. Vlrich
  3. Chem. Rev. v.89 R. D. Miller;J. Michl
  4. Ceram. Bull. v.62 C. L. Schilling, JR;J. P. Wesson;T. C. Williams
  5. J. Polym. Sci. ; Part A : Polymer Chem v.29 R. D. Miller;D. Thomson;R. Sooriyakumaran;G. N. Fickes
  6. Adv. Mater. v.2 M. Peuckert;T. Vaahs;M. Bruck
  7. U.S. Patent, 4,267,211 S. Yajima;K. Okamura;T. Shishido;Y. Hasegawa
  8. European Patent 0251 678 A2 R. H. Baney;G. T. Burns;J. H. Lewin
  9. U.S. Patent 4,336,215 S. Yajima;K. Okamura;Y. Hasegawa;T. Yamamura
  10. J. Mater. Sci. v.16 S. Yajima;T. Iwai;T. Yamamura;K. Okamura;Y. Hasegawa
  11. Am. Ceram. Soc. Bull. v.56 S. Yajima;T. Shishido;K. Okamura
  12. Appl. Organomet. Chem. v.8 Y. Mu;R. M. Laine;J. F. Harrod
  13. J. Am. Ceram. Soc. v.58 S. Yajima;K. Okamura;J. Hayashi
  14. Ceramic Bulletin v.50 no.12 S. Yajima;T. Shishido;K. Okamura
  15. Chem. Mater. v.5 R. M. Laine;F. Babnneau
  16. J. Am. Ceram. Soc. v.73 D. J. Carlsson;J. D. Cooney;S. Ganthier;D. J. Warsfold
  17. Chem. Mater v.3 E. Bouillon;R. Railler;R. Naslain;E. Bacque;J. P. Pillot;M. Birat;J. Dunogues;P. V. Houng
  18. Organometallics v.12 R. J. P. Corriu;D. Leclercq;P. H. Mutin;J. Plareix;A. Vionx
  19. J. Mater. Sci. v.18 Y. Hasegawa;K. Okamura
  20. J. Mater. Sci. v.26 E. Bouillon;F. Langlais;R. Pailler;R. Naslain;F. Cruege;P. V. Huong;J. C. Sarthou;A. Delpuech;M. Monthioux;A. Oberlin