Effects of Jinmootang on the Gentamicin-induced Nephrotoxicity in Rats

진무탕(眞武湯)이 Gentamicin-유도 신독성에 미치는 영향

  • Lee, Kyu-Hyun (Dept. of Physiology, College of Oriental Medicine, Dong-Guk University) ;
  • Kim, Gil-Whon (Dept. of Physiology, College of Oriental Medicine, Dong-Guk University)
  • 이규현 (동국대학교 한의과대학 생리학교실) ;
  • 김길훤 (동국대학교 한의과대학 생리학교실)
  • Published : 1999.09.01


Aminoglycosides, including gentamicin, have been used as antibiotics for the various infections by gram-negative bacteria. However, there are some restrictions for using these drugs. Gentamicin, a typical aminoglycoside, has the side effect of nephrotoxicity, including polyuria, glycosuria, proteinuria, glomerulonephritis, and uremia. The aims of this study were to examine the prevention or reduction effects of Jinmootang on the gentamicin-induced nephrotoxicity and to investigate the possible mechanisms on the effect of Jinmootang. The subcutaneous injections of 60mg of gentamicin per kg of boby weight to Sprague-Dawley rats for 8 days induced typical symptoms of nephrotoxicity by aminoglycosides. 0.6ml of water extract Jinmootang (100ml/chup) was orally treated in the experimental animal. 24-hour urine was collected with the metabolic cage and plasma was sampled from the abdominal aorta. The plasma concentration of sodium was significantly decreased by the treatment of gentamicin but it was not-significantly changed by the treatment of Jinmootang to the animal. The concentration of potassium was greatly decreased in the gentamicin-treated animals. However. it was returned to the normal level in the Jinmootang-treated animals. The concentrations of creatinine and urea were increased by gentamicin treatment. But, Jinmootang reduced these concentrations. Nevertheless, the osmolalities of plasma in both group were not different from each other. Even though the plasma concentration of aldosterone was not significantly changed, the mean value was increased by the gentamicin intoxication. The concentration of aldosterone was decreased by the treatment of Jinmootang. The reduction of aldosterone level in plasma could be a factor to improve the hypokalemia. The fractional excretion of potassium was much higher than normal by the treatment of gentamicin and it was decreased by 50% in the Jinmootang-treated rats. Therefore, the reabsorption of potassium was significantly increased by the treatment of Jinmootang, even though the filtered load of potassium in the experimental group was much highter than control. Even though the concentration of plasma aldosterone was decreased by the treatment of Jinmootang, the fractional excretion of sodium was not increased, slightly lower. These data suggested that Na reabsorption was increased in the proximal tubule by Jinmootang. The filtered load of glucose in the Jinmootang-treated group was greater than in control. Nevertheless, the fractional excretion of glucose in the experimental group was not different from that in control. These results indicate that glucose reabsorption was increase in the proximal tubule by Jinmootang treatment. The results of this study suggest that Jinmootang could improve the some nephrotoxic symptoms induced by gentramicin treatment. Hypokalemia, the reduced glomerular filtration rate, and dysfunctions of renal proximal tubule and distal nephron were significantly recovered to normal level. The increase of glomerular filtration rate by Jinmootang might contribute to eliminate the waste product, including creatinine and urea, and/or gentamicin through the kidney.