Regulation of Magnesium Release by cAMP during Chemical Hypoxia in the Rat Heart and Isolated Ventricular Myocytes

  • Kim, Jin-Shang (Institute of Cardiovascular Research, Chonbuk National University Medical School) ;
  • Scarpa, Antonio (Department Physiology and Biophysics, School of Medicine, Case Western Reserve University)
  • Published : 1999.02.21

Abstract

Chemically induced hypoxia has been shown to induce a depletion of ATP. Since intracellular free $Mg^{2+}\;([Mg^{2+}]_i)$ appears to be tightly regulated following cellular energy depletion, we hypothesized that the increase in $[Mg^{2+}]_i$ would result in $Mg^{2+}$ extrusion following hormonal stimulation. To determine the relation between $Mg^{2+}$ efflux and cellular energy state in a hypoxic rat heart and isolated myocytes, $[Mg^{2+}]_i,$ ATP and $Mg^{2+}$ content were measured by using mag-fura-2, luciferin-luciferase and atomic absorbance spectrophotometry. $Mg^{2+}$ effluxes were stimulated by norepinephrine (NE) or cAMP analogues, respectively. $Mg^{2+}$ effluxes induced by NE or cAMP were more stimulated in the presence of metabolic inhibitors (MI). Chemical hypoxia with NaCN (2 mM) caused a rapid decrease of cellular ATP within 1 min. Measurement of $[Mg^{2+}]_i$ confirmed that ATP depletion was accompanied by an increase in $[Mg^{2+}]_i.$ No change in $Mg^{2+}$ efflux was observed when cells were incubated with MI. In the presence of MI, the cAMP-induced $Mg^{2+}$ effluxes were inhibited by quinidine, imipramine, and removal of extracellular $Na^+.$ In addition, after several min of perfusion with $Na^+-free$ buffer, a large increase in $Mg^{2+}$ efflux occurred when $Na^+-free$ buffer was switched to 120 mM $Na^+$ containing buffer. A similar $Mg^{2+}$ efflux was observed in myocytes. These effluxes were inhibited by quinidine and imipramine. These results indicate that the activation of $Mg^{2+}$ effluxes by hormonal stimulation is directly dependent on intracellular $Mg^{2+}$ contents and that these $Mg^{2+}$ effluxes appear to occur through the $Na^+-dependent\;Na^+/Mg^{2+}$ exchange system during chemical hypoxia.

Keywords