FRACTIONAL MAXIMAL AND INTEGRAL OPERATORS ON WEIGHTED AMALGAM SPACES

  • Rakotondratsimba, Y. (Institut Polytechnique St-Louis, EPMI)
  • Published : 1999.09.01

Abstract

Necessary and sufficient conditions on the weight functions u(.) and $\upsilon$(.) are derived in order that the fractional maximal operator $M\alpha,\;0\;\leq\;\alpha\;<\;1$, is bounded from the weighted amalgam space $\ell^s(L^p(\mathbb{R},\upsilon(x)dx)$ into $\ell^r(L^q(\mathbb{R},u(x)dx)$ whenever $1\leq s\leq r<\infty\;and\;1. The boundedness problem for the fractional intergral operator $I_{\alpha},0<\alpha\leq1$, is also studied.

Keywords

References

  1. Proc. Amer. Math. Soc. v.91 Weighted norm inequalities for the Hardy-Littlewood maximal operator on spaces of homogeneous type H. Aimar;R. Macias
  2. SIAM J. Math. v.14 Weighted norm inequalities for certain integral operators K. Andersen;H. Heining
  3. Studia Math. v.108 Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type A. Bernardis;O. Salinas
  4. Studia Math v.109 Integral operators on weighted amalgams C. Carton-Lebrun;H. Heinig;S. Hofmann
  5. Lecture Notes in Math. Analyse harmonique non-commutative sur certains espaces homogenes R. Coifman;G. Weiss
  6. Bull. Amer. Math Soc. v.13 Amalgams of $L^p\;and\;l^q$ J. Fournier;J. Stewart
  7. Georgian Math. J. v.3 Solution of two-weight problems for integral transforms with positive kernels I .Genebashvili;A. Gogatishvill;V. Kokilashvili
  8. Georgian Math. J. v.3 Criteria of strong type two weighted inequalities for fractional maximal functions A. Gogatishvili;V. Kokilashvili
  9. J. London Math Soc. v.10 Harmonic analysis on amalgams of $L^p\;and\;l^q$ F. Holland
  10. Trans. Amer. Math Soc. v.328 Change of variable results for $A_p$ and reverse Holder $RH_r$-classes R. Johnson;C. Neugebauer
  11. Canad. Math. Bull. v.36 Weighted restriciton for curves J. Lakey
  12. Canad. J. Math. v.46 Weighted Fourier transform inequalities via mixed norm Hausdorff-Young inerqualities J. Lakey
  13. Indiana univ. Math. J. v.43 Two weighted inequalities for potential and fractional type maximal operators C. Perez
  14. Proc. London Math. Soc. v.71 On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted $L^p$-spaces with different weights C. Perez
  15. Zeit. Anal. Anw. v.15 Weighted inequalities for maximal and fractional integral operators Y. Rakotondratsimba
  16. Studia Math. v.75 A characterization of a two weight norm inequality for maximal operators E. Sawyer
  17. Amer. J. Math. v.114 Weighted inequalities for fractional integrals on euclidean and homogeneous spaces E. Sawyer;R. L. Wheeden
  18. Integr. Equat. Oper. Th. v.15 Weighted norm inequalities for maximal operators and Pisier's theorem on factorization through $L^{p\infty}$ I. E. Verbitski
  19. Studia Math. v.107 A characterization of some weighted norm inequalities for fractional maximal functions R. Wheeden