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Abstract —In this paper, the historical development of radiationless. transitions will be briefly reviewed. The
paper will then focus on the ab initio calculations of internal conversion rate constants with emphasis on the
case of small polyatomic molecules where the Duschinsky effect is important. As an example, we have chosen
the new expressions for singlevibronic level rate constants of radiationless transitions. This type of ratc

constants is important in femto-second processes.

INTRODUCTION

Radiationless transition is a very important primary process
in photochemistry. It consists of internal conversion and inter-
system crossing. When the electronic stales involved in radi-
ationless transitions are not very high in energy, the Born-
oppenheimer approximation can be uscd as a basis set. and
the radiationless transition can be regraded as due to the break-
down of the Born-Oppenheimer approximation.’? For inter-
nal conversion, their B-O breakdown is induced by the
kinetic energy operator of the nuclear motion, while for inter-
system crossing this breakdown can be induced by the spin-
orbit couping or vibronic spinorbil coupling.’-?

Recently, the experimental and theoretical investigations
of femtosecond processes have attracted considerable atten-
tion. For the case in which the fs process involves a non-
adiabatic transition like electronic xation, photo-induced
electron transfer, photo-induced energy transfer etc, vibra-
tional equilibrium often cannot be assumed to be complet-
ed before the fs process takes place. In this case, vibrational
relaxation and the particular clectronic process under con-
sideration are competing (i.e., they occur simultaneously);
in this case, single-level rate constants rather than the canon-
ical (or thermal average) rate constants of the electronic
process are involved in [s processes. In this paper, new expres-
sions of the single-vibronic level IC rate constants will be
presented.

For small polyatomic molecules, the Duschinsky effect? is
very important. The calculation of rates of transition among
various electromic states in a polyatomic molecule (in both
radiative and nonradiative processes) necessitates and exact
evaluation of multidimensional Franck-Dondon (FC) integrals.
In an electronic transition, the normal coordinates of elec-
tronic states generally undergo a displacement and/or distortion
as well as a rotation. The rotation of potential surfaces
results in a non-separability of the multidimensional FC
integrals.” To treat this effect on radiationless transitions, we
shall consider the internal conversion.

Recent rapid progress in ab initio molecular orbital cal-
culations has made it possible to carry out the ab initio cal-
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culations of spectroscopy and dynamics of molecules ol rea-
sonable size. In this paper, the ab initio calculation of radi-
ationless tramsitions will be reported. Although general
theory of radiationless transitions is well documented,’ >
13 practical calculations of these rates using ab initio elec-
ronic wavefunctions and ab initio potential surfaces are still
rare. /1%

The preseent pape ris organized as follows, in Section 2,
a general theory of IC with the Duschinsky effect will be
developed and in Section 3, we shall present new expres-
sions for single-vibronic level rate constants of IC. The
application of this theory to the IC of the ethylenc molecule
is presented in Section 4.

DUSCHINSKY EFFECT

The thermal average rate constant of internal conversion
(IC) [or the electronic transition ¢— b in the Condon approx-
imation can be expressed ag’

)
, 2
W=77[|Re(ab)lzzz P, 8(Eay —Epy),  (2-1)

7
By |—|O
<bV|aQ€| av>

where
2 a
R (ab)=—1* (D, |-5Q—£]<Da) (2-2)

Here for simplicity it is assumed that only one promoting
mode Qv is reponsible for IC. Notice that

1 K =
IfV=ﬁ—llRf(ab>|2 [dte™ 2 K ()G (1) (2-3)
where
3 2
Key=E3, Pwkzw, (sz@l Xawy (©Q0))
(2-4)

. ' 1 ' 1
x explir{(vy +§)ﬂ>g ~(vp +5)we}],

and G(r) is given by
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Table 1. Vibrational frequencies (cm™")
excited states.’

of C,H, in the ground and

Table 2. Normal modes of C,H, in the ground state.*

Maode @, Qg @) Q4 Q5 @53 Q¢ U, 05 @, Q5 Oy

b3, 1 CCH bend. 1205 908 1207 1150 1178 1212

23 .00 .00 .00 -J1-17 .27 23 -42 41 40 -40

Assignment ‘A, 'B, "By, B, By 2'A, Sym by by by, 3, by oz, by oa, by oa, by by
a, vCH st 2979 2828 2970 2964 2956 3002 C,x .00 27 43 .00 .00 .00 .00 .00 .00 .00 .00 .00
a, w, CC str. 1580 1398 1508 1536 1527 1332 y -13.00 .00 .00 43 00 00 .00 .00 00 -23.23
a, vy CH, scis. 1286 1227 1227 1234 1192 1234 z 00 .00 .00 .00 .00 33 23 .59 .14 -19 00 .00
a: v, CH, twist. 977 855 502 883 507 333 CiLx .00 .27 -43 .00 .00 .00 .00 .00 .00 .00 .00 .00
b, ¥ CH str. 2960 2798 2947 2980 2950 2994 v -13 .00 .00 .00 -43.00 .00 .00 .00 00 23 23
Uy CHyscls. 1435 1274 1417 1438 1421 1433 2 00 00 .00 .00 .00 -33 .23 -59 .14 .19 00 .00
by, ¥ CH str, 3032 2840 3093 3065 3040 3099 H'.x .00 -46 -40 .50 .00 .00 .00 .00 .00 .00 .00 .00

y

z

b, v CH2Z wag. 860 666 985 1097 999 856
by, v CH slr. 3059 2841 3065 3088 3090 3114
by, ¥, CH, wag. 813 915 1090 1159 1098 1113
by, v, CCHbend. 795 655 796 884 799 816

iCalculated at the CASSCF(2,11)/6-311(2+)G* level and scaled by 0.9.
See Ref.32 for more detail.

G(t)=§§'1~"m{<®bvf|®av>r2 exp{%(Ebvf —Em,)} (2-5)

Here < &,,.18, > denotes the FC factor for accepting
modes.

In this paper, we shall discuss the effect of the Duschin-
sky effect on internal conversion. Let us [irst consider the
simplest case; that is, only modes 1 and 2 exhibit the
Duschinsky effect. In this case, G(#) can be written as

P12

G =G ] GO, (2-6)
i=1
where
G =55 Pun, (20 QD) e, (O1))]
explir{(v] + )0 - (v, + ), 1], (2-7)

and

G = ZL ZZ Pavlvz

v vy vy vﬂ

(2w (@) 20y Q)] ey (O ey (22 )

(2-8)

PV P A 1 1
x explit{(vy, +5)(oa +(vp +5)a)ﬁ -(n +5)w1 —(vo +§)a)2}].

Using the Slater sum,’” we obtain

ha
251nh—17 inh ——2 /,Blﬂzﬂaﬁﬁ w  wm w

27 A [0, [0, [dQ, jdgz
\/2475 sinh 4 sinh Ay sinh g, smh,uﬁ 0 o = =

Giz(n=

xcxp’r {(Q1 +0)° tanh—+(01 -0 coth%H

ﬂ

Q-.

—0.)2 coth 2

% CXp| —

% EX] [—— (O +Q2) tanh ——+(Q7 —Qq) coth LH

Q +04)° tanh £2 4 (0

]

-43 .00 .00 .00 38 41 -39 -15-25.25 25 -25

%, x .00 -46 -40 -50 .00 .00 .00 .00 .00 .00 .00 .00
y 23 .00 .00 .00 -.11.17 -27 -23 42 -41 40 -40
z 43 00 .00 .00 -38 41 -39 -15-2525 -25.25
H,x .00 -46 .40 -50 .00 .00 .00 .00 .00 .00 .00 .00
y 23 .00 .00 00 .11 -17-27 23 42 41 -40-40
z 43 00 .00 00 38 -41-39 .05 -25-25 25 25
HYx .00 -46 40 .50 .00 .00 .00 .00 .00 .00 .00 .00
y 23 .00 .00 00 11 17 27 -23 -42-41 -40 -40
X -43 .00 .00 00 -38-41-39 .15 -25-25 -25-25

"Mass-weighted.

B8 o o5y B o T2 ea B
® CXD)| —T{(Qﬁ+Qﬁ)’mh7+(Qﬂ—Qﬂ) cothT} ,(2_9)

where for example A1 =—-., B,=—2.

1y

hay h
Ay =itayy +— Ao =itwy + o

X s Mg =iy, pp=-itog, (2-10)
and
Qo =Co1(Q1 + AL+ Uy (U + ADy),
Qp =Cp (O +20))+Cpa(Qr + A0).

(2-11)

Notice that
Gz () =4K |, _[dQ de] jd07 jd

Xexp[— 4101+ 0D - Ay (0r +02)% — 412(Q1 + D1 (@, +§z)]
XEXP[— A +D1) - 4207 +Q_2)]

><CXID[—BH(QI —01)* - Bp(0; ~02)” - Bi3(Qy -1 Q2 —Qz)]
x exp[- D], (2-12)

where

A R 7y
Ay —'B’ tanh 'Ba £a ()7 tanh /-’2a TF (¢ ﬂ,-)7 LanhT’B, (2-13)

for i=12

’

v Pl i
A12=E2£Calca2 tanh'UTD‘ ﬁCﬂ,Cﬂz tamh—ﬂ (2-14)

_Bi i, B /4 BB 32 om 8
B, 2 coth a(Cw) coth =% T(Cﬂi) uolhT, (2-15)

it

for i=1.2

’

Ba Bp
B12 = 5 Calcaz COth—+—C ﬂlc’ﬁz COth—ﬂ

(2-16)
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Table 3. Normalized Duschingky matrices for the 'B,,—' A, and 'By,

— !By, transitions in C,H,
a) By, —'A,
Qa] Qa?, Qr13 le
O 0.7977 -0.1467 -0.002727 0.5780
0w 008871 08622 03802 -0.3153
O -0.1024 0.2951 -0.9156 0.2364
0w 0.5850 03823 0.1259 0.7195
b) |B3u _"lBlu
Q al QL(Z Q ad Qu4
on 07975 0.1314  0.02170 -0.5815
O, -0.1256 0.9106 0.006717 -0.3777
0, 004878 003957  0.9909 0.1168
O 0.5849 0.3823 -0.125 0.7194
hﬂ.}')
NB VB2 B sinh 2L iy 72
Kip - P T ok (2-17)
\/2%4 sinh 2, sinh 2, sinh 4, sinh 4y
D=pg tanh '(CaIAQ] +Ca”A02) (2—18)
+Bj 1@1%(051/_\9 +Cp40,)7,
Ay = By tanh £ C (€ AQ) + Cap805)
. .
+ By tanhTﬂCﬂ](CﬂlAQl +Cpa0,), (2-19)
and
Ay =y tanhﬂ_acaz(calAQI +CoAQy)
+P85 tanh 2-20)
It follows that
4
Gr2(t) =Ky 3 z 3
(At1doz — Ay2° /4By Byz — B2 14)
A4
. (4 _T)IAIZ)Z
X eXp + Al pl. (2-21)
11 4y — AL
2744

It should be noted that K¢(*) can be expressed as

K= 16,01 ﬂ b S —
i tanb 2 L+ By tonh £° “f B coth% + [y coth %
2687 B (80¢)*

! ; (2-22)
(Bp coth );—p + f3p coth %)2

where G, (1) is given by

99
2, sinh 22
Gi(t)= 2L
J(,B, tanh 2 +,B, tanh & )(ﬂ, coth 22 +,BI coth'ul)
l bl
BB Jz B.BAQ;
x| — —— | exp[- 7 1.
[Slnh&i sinh 2 B coth /;1 LB coth); (2-23)
where
. hw, .
Ay =itw; +— 1 pp = —itw), (2-24)

i L k[’ 1

As can be seen from the above discussion, one central the-
oretical concept, which is yet to be tested in a rigorous man-
ner, is that the critical role the “promoting mode™ is predict-
ed” to play in electronic relaxation processes. Recently, Moule
and Lim’® have shown that the inefficiency of S(4,)—Sy(4,)
and §,(A;)—S5,(A,) internal conversions in gaseous thiophas-
gene (ClL,CS) has its most likely origin in the abgsence of an
a, virbration that can vironically couple S, with S, and S,.

For the three-mode case, we find

Graz(t) = K23

x\/ i \/ 3
az3(Ai1dyy ~ A1 ® 1)\ byy (Br1 By + Brp” 14)

x exp| — D+ M 2 2.25)
4A11 Adyy — Ay 14 4y) 4a33 (2-2
where
(Ao - Ar:Als)
g3 =(dgy -3y 24y (2-26)
sl A T
Aj)
(4 =2y Andis
a5 =(4 _dnsdy, T 24y 241, (2-27)
3 ZA” sz. 5
Ay _4.4 )
1
) (B3 - B”BIJ)"
b = (Bss - - — 2B (2-28)
4By, B”z
2(322 __‘-)
4By,
and
AT AT hary | B
BB B3 Bu BBy smhﬁ—s oh % sinh 2
(2-29)

\/267:6 sirth 4; sinh Ay sinh A5 sinh g, sinh Hp sinh g,
Similarly for the four-mode case, we have
Grzzt)=K1234

274 974
I |

x
PR e 5.2 e
\((AnAzz ——]4'—)(4733%4 - '%) \/(31 1822 —%)(5331744 —%)

s (4 -2y (aq - 924932
xexp - D+ _ + __2A a32 2a33
44y, A2 daz asg® | (2-30)
Hdp - =) Hagy -2
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Table 4. Vibronic coupling and the rates of internal conversion between various singlet states of C,H..

IBIg_) IBBu IBZg_\' IB3u zlAg_) lBBu ]BBU_) ]BIU ]Blu_) ]A;_;
@ 6151 5391 8837 13243 43945
o) 3076(410) 2948(w,3) 918(a,) 993w, ) 2877 ag)
839(w,12) 1419(w,) 1353(w,)
40,® 0.010 0.025 0.072 0.414 0.416
40,0 0.025 0.006 0.013 0.443 0.469
40" 0.028 0.029 0.029 0.224 0.286
40,0 0.106 0.058 0.304 0.953 1.273
<Pa| -2 |@,>© 0.2134(2 1) 0.058%(2 ,5) 0.1276(Q o) 0.0080(2, () 0.0038(2 1)
2l 0.1129(Q 1) 0.2619(Q ) 0.0723(2 )

1.09 1042 1) 2.97 x101Q o)

W= (T=0)

4.72 x109(Q ) 1.08 x107(@ ,,)) 7.39 x106( Q@ 5)

1.64 x10%Q 0 4.09 x1019%Q ) 1.26 x109( 2 ;o)
all
(a) In the units of 2wemt.  (b) In A vamu'?,
(c) Tn atomic units. (d) In 5L
where 2 2( @; 2
Y W,y ===|R;(ab) (— Z(Opy |00 )| S(Epy +hie0; - Egy) (3-1)
) (dyq — 2127142 h 2h )y
A4 24y, 2.31
P, Uit S TR (231) ‘
WEVE AT g, - A2 744))) Here the Franck-Condon factor | {8_1 8, >I> does not con-
tain the contribution from the promoting mode €, Notice
) p g :
(s - Ay 'i'—)(AM Ay A14) that W, can be written as
A1a 4y 241 24y, 1 2w it
ad=(Ag - . 2.32 - Lip @y ity i}
t oy Uy — A1p2 144;)) (2-32) W hz)R,(abj £ [, dre e, (t) (3-2)
1 -
e Aoz — A;AB)(AM - /1;1414) where @, = E(Eb +ho, -E,), and
a5 = (5 =220 - - 233) )
Adyy - 12 - , % ol it [ v+ Lo, — 1
27 44, Gy ()-22 (X Xy | expl it i 4 2 ooy = v+ 5 foe | (3-3)
B3B3 By B4
(Bys = 1213 )(By, - 2714
By = (Bag — Bi3Big )— B oy M amy (2-34) It can be shown that G,{7) can be expressed as (see Appen-
2By 2B Blzz) dix)
2 =
4B,
G, ( v wtr(vy —my Jaip 2
BiaBig o v,()z 2" vyle H, ﬂ(eumﬂ _1) (3-4)
B2 (Bay —T) _— Gy (1) my=027e e [, —m WE TV 2
544:(344_4311)_—3172" 235 here
4(By Ty )
1
and Go, (t)= e"P[_ Se (] -t )] (3-5)
‘/Eﬁzﬂg,ﬂz;ﬁ&ﬂ'ﬁﬁ}ﬁ& sinh 2L sinh mﬂsinhftﬂsinhhﬂ

K - 2kT 2kT 2kT 24T
1234 = 3 8. - -
/2% 7* sinh A sinh A5 sinh A5 sinh A, sinh 2, sinh H sinh y, sinh g5

(2-36)

»

SINGLE-VIBRONIC LEVEL RATE CONSTANT

Here we shall consider the evaluation of single-vibronic
level IC rate constant which can be expressed as

and S, =%AQ}. In Eq. (3-5), Hu(z) denotes the Hermite

polynomial.
Applying the saddle-point method to Eq. (3-3) yields

(3-6)

1 ) ot 2 .
o =h_2| R,-(ablz(jj fw a’texp[zta)ba —zﬂ 8, (1- ity )} 3-7)
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and t* denotes the saddle-point value of t determined by

B gp = Oy +Z€’S€mge”*“’f (3-8)

DISCUSSION

From the previous scction, we can see that in order Lo cal-
culate the IC rate constants for polyatomic systems, it is nec-
essary to determine vibronic coupling between the elec-
tronic states, which constitutes the electronic part of the IC
rate constant. Ab initio calculations of vibronic coupling in
the application to symmetry-forbidden vibronic spectra of for-
moldehyde/#/¢ 2/ and benzene???# are well known. Recent-
ly, we have shown how to calculate vibronic coupling for
polyatomic moecules using modern quantum chemical pro-
grams and applied this approach to the calculations of the
vibronic coupling among the singlet excited #-7* states, Ryd-
berg o-3s and #3p states and the ground electronic state of
C,H,. These results will be used in this paper for the cal-
culation of IC rate constants of C,H,. Some preliminary results
have been reported.?

Radiationless transitions in ethylene are of significant
interest to experimentalists and theorists because of their rel-
evance to the photochemical behavior and photodissociation
dynamics of this molecule.?*Y We have investigated vibron-
ic coupling between various singlet excited states and the
ground state of C,H; by ab initio calculations.’ Table 1 shows
the CASSCF-calculated vibrational [requencies of six sin-
glet electronic states of C,H,, including the ground state ('A,)
and the excited valence w-w#('B,,) state and Rydberg -
3s('By,), m-3p,('B,,), ®-3p.('B,,) and 7=3p (2!A ) states.??

Normal modes of the ground state are presented in Table
2. The normal modes for the Rydberg states, ('8,), ('B,,).
('By,) and (ZlAg) arc similar to those of the ground state; vir-
tually there is no mixing between the normal modes. The -
m* state has the equilibriom geometry of D,, symmetry with
CH, groups twisted by 90° with respect to each other®. This
results in heavy mixing of four normal modes 0-@4 with
respect to the ground state normal modes. These four mixed
modes found in the 7-7* state belong to the a irreducible
representation of the D, point group, common to the ground
state (D,,) and the m-7* state (D,,) minima. Quantitatively,
the mixing between these O -Q, is characlerized by the
Duschinsky matrix. The normailized Duschinsky matrices are
shown in Tablc 3.

Table 4 contains the energy gaps (a,,) between variou states,
the promoting mode frequencies (w), displacements of the
normal modes AQ,,- 42, calculated from the optimized
geometries, and vibronic couplings { @/2/20,/ @, for IC tran-
sitions. Here the suffices a and b denote the final state and
the initial state of IC, respectively. Notice that

fo2 ¢><‘D

Eb -E,

ov

o)

(4-1)

For the computations of vibronic coupling, we have used
MRCI/ANO(2+) wave functions and the transition matrix ele-
ments between various states over the one-electron electric
field operator at the atomic centers calculated using the
MOLPRO-96 program.

Table 4 also lists the calculated IC rate constants for 'B,,
—'By,, 'Byy—'B;,, 2'B,—B;,, 'B;,—'B,, and 'B,,—~'A,. As
can be seen from Table 4, the IC for 'Blg—'B,,, 'B,,—'B;,
and 'B,,—'A, can be induced by more than one promoting
mode.

In concluding this paper, it should be noted that in this
paper we have reported the general expressions for single-
vibronic level rate constants for radiationless transitions.
These expressions arc useful not only for collision-free mol-
ecules but also for the case in which femto-second non-adi-
abalic transitions are involved and vibrational relaxation is
not much [aster that the rate of non-adiabatic transition. In
this paper we have also shown how one can perform ab ini-
tio calculations of IC rate constants by using C,H, as an exam-
ple.
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Appendix

Notice that

gl

e

Gvﬂ (t) = ‘?:;Z:K)(bv'g

—M(Vﬁlj —HE(VHLJ 2
R T

: (A-1)
vy
Applying the Slater sum, we obtain
1
~ﬁ.[(\12 +—J _\/}6_
G, (t)=¢ 2 NP d0,d0, X,
"L() (271'51nhy )1/2 _Eo J- Qs Ql’ avg (QE)

Xav, (Qf )EXP[ {(Qe +0f ) tanh% + (Q'g -0y )2 coth—"ézﬁH

(A-2)
where A,=itw, and #',=-itw, Using the contour integral rep-
resentation for H,(z)
~xt-2xz

no.oe
H,(2)=(- 1)”&4 de

(A-3)

we find

=y vy +l) 2

G, (t)= Ve © o ("—”!)24 :_xl dx,

(27 sinh 22 )”“ Y\ 2

2

S
Xt

<

dy f | dQ,ngexp[— ﬂ{(Qﬁ + Qe) (Qé -0y )2 +

(04 + 01 ann £+ (0 - 07 coth%} - 2B Qe +:0; )}
(A-4)

Performing the integrations with respect to Q¢ and 2
yields

vﬂ 2 ] dr
‘j. v,ul -vm-!dx M’,_x
2 By l+coth—'-)-
82
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and N, denotes the normalization constant.
It follows that
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