Recovery of nickel from the spent nickel-cadmium battery

Je-Shin Park, Kyung-Ho Park, Ho-Seok Chon, Jung-Soo Shon and Byoung-Gyu Kim

Korea Institute of Geology, Mining & Materials

ABSTRACT

This paper presents a hydrometallurgical process for recovering nickel as nickel sulfate from the spent nickel-cadmium battery in which cadmium was removed by vapouring method in vacuum. First, selective crushing and classification method were performed to separate iron physically and the nickel-rich sample (over 80% nickel) was obtained. This sample was dissolved in sulfuric acid to obtain a nickel sulfate solution close to its saturation point. The free acid in the unpurified nickel solution was neutralized and iron was removed from the solution. The nickel sulfate solution was crystallized at around 45°C to obtain nickel sulfate hexahydrate.

Key words: nickel-cadmium battery, physical separation, dissolution, recrystallization, nickel sulfate
게 개량 2원의 폐기물을 분말공을 부과하고 있을 뿐. 형부차별에서도 구체적 수기 처리계체는 취하지 않기
은 실험이다. 단지 경남 창원시 소재 한일 재생단속(주)
에서 만간 2,700 ton 정도의 폐Ni-Cd전지를 국내, 외로부
터 수거하여 Cd만을 분리 회수하고 납은 중류전자는
전량 수출하고 있다.
본 연구에서는 전등 중류㈜으로 카드뮴을 세거한 Ni-
Cd폐전지 중류전사로부터 니켈을 회수하기 위한 기초
연구로서 황산을 침출제로 사용한 침출실험을 행하였고
침출용액으로부터 첨을 제거하고 결정화 과정을 통하여
황산나拂을 제조하는 실험을 수행하였다.

2. 시료 및 실험방법

2.1. 시료
Table 1은 중류전에 의하여 Cd를 세거한 Ni-Cd폐전지
중류전사로부터 포함되어 있는 니켈(Ni), 철(Fe), 코발트
(Co), 카드뮴(Cd)의 함유량을 나타낸 것이다. 본 시료
는 주로 니켈(Ni)과 철(Fe)로 구성되어 있으며, 전지의
성능을 향상시키기 위하여 원소는 소량의 코발트(Co)
가 포함되어 있다. 이와 같은 시료를 hammer crusher로
파쇄한 후 전개로하여 일부분리를 행하였다.

2.2. 실험방법
Fig. 1은 폐전지로부터 나拂을 회수하는 전계 공정을
나타낸 것이다. 먼저 카드뮴을 세거한 폐전지를 Hammer
crusher에 의하여 파쇄한 후 제거를 위하여 니
켈은 규칙은 납시와 함께 제거되는 스크립으로 분리
하였다. 체르스크립의 경우 소량의 니켈이 함유되어 있기
때문에 코발ತ로 제거용이 가능하며, 니켈은 규칙을
높은 시료는 침출에 앞서 전혜질소용을 제거하기 위하
여 수액을 행한 뒤 침출실험에 사용하였다. 침출실험은
1000 ml 용량의 5구 플라스크 반응조를 이용하여 행하
였으며, 이 반응조는 온도 조절기가 부착된 가열대를
(heating mantle)에서 가온 및 일정한 온도를 유지하
도록 하였다. 황산을 중류전사와 적당량 섞어 일정한 용
도로 조절한 용액 500 ml의 반응조 안에 넣고 식시험온도까
지 기온하였다. 반응조의 용액의 온도가 실제온도에 도
달하면, Ni-Cd폐전지 중류전사 시료 일정량을 반응조에
넣고 침출 시키면서 일정 시간간격으로 용액을 5 ml씩
채취하여 용액 중에 녹은 Ni 및 Fe와의 양을 원자흡광분
석기(SpectraAA-20, Varian)로 분석하여 침출물을 측정
하였다. 침출액은 건조 및 과산화수소에 의하여 Fe(II)
를 Fe(III)로 산화시키고 NiSO₄와 용액으로 pH를 4.00이
상으로 조정하여 첨을 제거하였다. 첨을 제거한 침출액
은 80℃로 가열하여 수분을 증발시킨 후, 45℃에서 절
정화 및 결정화실험을 행하여 황산나拂을 제조하였다.

3. 결과 및 고찰

3.1. 물리적 성질
Ni-Cd전지는 침합금의 방사 위에 양극의 경우 니켈
피어스트, 읍극의 경우 카드뮴 채체스트가 부착되어 있
는 전극과 침합금의 의외로 이루어져 있는데, 물리적성
질에서는 침합금으로 만들어진 외의 읍극으로부터 니
켈 피어스트를 분리하기 위한 공정이다. 본 실험에서는
Hammer crusher를 사용하여 파쇄처리하였는데, 실험결

<table>
<thead>
<tr>
<th>Sample</th>
<th>Chemical components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ni(%)</td>
</tr>
<tr>
<td>Roll type</td>
<td>55.02</td>
</tr>
</tbody>
</table>
Table 2. Results of particle size analysis on sample crushed by hammer crusher

<table>
<thead>
<tr>
<th>Particle Size (mesh)</th>
<th>Products wt (%)</th>
<th>Chemical components (%)</th>
<th>Ni (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Na</td>
<td>Fe</td>
</tr>
<tr>
<td>+1</td>
<td>13.8</td>
<td>27.95</td>
<td>60.90</td>
</tr>
<tr>
<td>4/8</td>
<td>13.2</td>
<td>24.25</td>
<td>64.71</td>
</tr>
<tr>
<td>8/14</td>
<td>15.0</td>
<td>28.26</td>
<td>59.95</td>
</tr>
<tr>
<td>14/20</td>
<td>8.7</td>
<td>54.15</td>
<td>36.89</td>
</tr>
<tr>
<td>20/28</td>
<td>9.2</td>
<td>80.53</td>
<td>8.88</td>
</tr>
<tr>
<td>28/35</td>
<td>16.1</td>
<td>86.63</td>
<td>4.52</td>
</tr>
<tr>
<td>35/48</td>
<td>9.9</td>
<td>85.71</td>
<td>4.02</td>
</tr>
<tr>
<td>48/65</td>
<td>6.6</td>
<td>84.05</td>
<td>4.71</td>
</tr>
<tr>
<td>65/100</td>
<td>2.7</td>
<td>75.60</td>
<td>7.44</td>
</tr>
<tr>
<td>100/200</td>
<td>2.7</td>
<td>72.95</td>
<td>11.10</td>
</tr>
<tr>
<td>-200</td>
<td>2.1</td>
<td>71.67</td>
<td>11.29</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>56.91</td>
<td>32.14</td>
</tr>
</tbody>
</table>

Table 3. Chemical analysis of the residue samples before and after washing

<table>
<thead>
<tr>
<th>Elements using water</th>
<th>Ni(%)</th>
<th>Fe(%)</th>
<th>K(%)</th>
<th>Mn(%)</th>
<th>Ti(ppm)</th>
<th>Co(%)</th>
<th>Zn(ppm)</th>
<th>Zn(ppm)</th>
<th>Cd(ppm)</th>
<th>Y(%)</th>
<th>Li(ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>87.60</td>
<td>7.98</td>
<td>0.52</td>
<td>0.029</td>
<td>53</td>
<td>3.17</td>
<td>0.88</td>
<td>24</td>
<td>394</td>
<td>0.14</td>
<td>233</td>
</tr>
<tr>
<td>After</td>
<td>89.63</td>
<td>7.22</td>
<td>0.003</td>
<td>0.026</td>
<td>41</td>
<td>3.28</td>
<td>0.92</td>
<td>22</td>
<td>327</td>
<td>0.081</td>
<td>148</td>
</tr>
</tbody>
</table>

과 hammer의 화학속도 1,500 rpm에서 파편의 서로를 1% 동그랗게 인쇄된 희리의 화학속도가 가장 높게 나타났으며, 화학물질의 임도분포결과를 Table 2에 나타냈다. 각 입도별 니켈 함량을 분석하여 분석에 따른 니켈의 이동특성과 결과의 분리 임도를 알 수 있었는데, -20 mesh에서는 니켈의 함량이 80 wt.%이상으로 되며, 유리 관할량이 10 wt.%이하로 대단히 얻고한 분리특성을 나타내고 있다. 이는 본 실험 결과 니켈의 침강성의 범위에 잘 균등되지 않는 희리와 생산성대인 파식스를 Hammer가 벌어 주는 역할을 하기 때문에 결과로 판단된다.

3.2. 첨성

3.2.1. 첨성 절전처리

물리적 절전에 의하여 서로증 니켈의 함유량이 80 wt.%이상인 -20 mesh의 사료에 대하여 화학속도에서 첨성 실험을 한 후, 사료 중에는 태평양에서 탄소(C) 및 질소(N)가 상당량 함유되어 있는데 이를 물질들은 수제(水洗)에 의하여 제거할 수 있다. Table 3은 사료를 수제하기 전후의 조성변화를 나타내고 있다.

위의 결과로부터 첨성 시료 중에는 니켈, 철 및 카드뮴이의에도 다양한 원소들이 전기의 성능 항상을 위해서 첨성되어 입법할 것으로 알 수 있다.

3.2.2. 첨성처리

첨성에는 온도와 산의 액도 등이 큰 영향을 미치게 되는데, 첨성 시료의 주요성분인 니켈과 철의 첨성에 이들 안전성이 미치는 영향을 조사하였다.

Fig. 2는 광액동도를 0.2 g/l로 하고 60분간 첨성하였을 때 각각의 화학속도별로 니켈과 철의 첨성률에 미치는 영향을 나타낸 것이다. 첨성제의 농도가 높음수록 니켈과 철의 첨성률에 대한 온도의 영향이 크게 나타남을 알 수 있었다. 니켈의 첨성기동은 각각의 화학속도별로 온도의 온도증가에 따라 첨성율이 현저하게 증가하였는데 반하여 첨성할 조건은 온도가 증가함에 따라 첨성율이 급격히 증가하는 경향을 보이고 있다. 이로부터 첨성시 조건을 나타내고 온도에 대하여 큰 영향을 받다고 있는 것을 알 수 있다.

Fig. 3은 광액동도를 0.2 g/l로 하고 60분간 첨성시켰을 때 각각의 온도에서 니켈과 철의 첨성율에 대한 화학속도의 영향을 나타낸 것이다. 첨성제의 온도가 50°C이하일 때는 철, 니켈 모두 화학속도에 관

J of Korean Inst. Resources Recycling Vol. 8, No 5, 1999
Fig. 2. The effects of temperature on the extraction rate of Ni and Fe.

Fig. 3. The effects of H$_2$SO$_4$ concentration on the extraction rate of Ni and Fe.

계없이 20%이하의 낮은 침출율을 나타냈으며, 70°C, 90°C 등의 고온에서는 농도변화에 따른 침출율의 변화가 크게 나타났다. 또한 고온에서 대량으로 침의 침출이 황산농도에 대한 영향을 많이 받는다는 것을 알 수 있었다.

침의 침출은 반응 초기에 급격히 이루어지는 것을 알 수 있었으며, 1~2시간 이후에는 황산농도변화로 일정한 침출율이 유지되는 현상이 나타났다. 나릴의 경우는 반응조건에 따라 같은 급격한 침출현상은 나타나지 않았으며 약7시간까지 지속적인 침출이 이루어질을 알 수 있었다. Fig. 4에서 보는 바와 같이 70°C, 4M 황산농도에서 7시간 침출 시켰을 때 나릴의 침출율은 99%까지 높일 수 있었다. 이때 420분 반응후의 용액의 pH는 0.7~1.0으로 나타났으며 4M 용액의 경우에는 별도 침출율과 용액의 증발로 일부 용액내 황산나릴이 결정화되는 현상이 나타났다.

지연자의 캄핑 제 8권 제 5호, 1999
3.3. 탈취 및 결정화

황산니켈 제조를 위해서는 전 단계에서 니켈과 함께 녹아 있는 철을 제거하여야만 하는데, 그 방법에는 1. 수산화철 첨지법, 2. 용매 추출법, 3. 이온교환, 4. 저결 정화법 등이 사용되고 있다. 본 연구에서는 먼저 수산화철 첨지법을 사용하여 용액의 철을 대부분 제거하고 다음의 황산니켈 제조시 저결정화 단계에서 최종적으로 제거하는 방법을 채택하였다. 철은 수용액 중에서 Fe(II)와 Fe(III)의 2가지 이온으로 존재하여 pH 8가 10, pH 3이상에서 Fe(OH)$_2$와 Fe(OH)$_3$ 형태로 결정된다. 한편 니켈은 Fe(II)와 유사하게 pH 8 이상에서 Ni(OH)$_2$로 결정된다. 따라서 수산화철 중에서 철을 제거하기 위해서는 철은 Fe(II)로 우선 결정시킨 후 용액의 pH를 4이상으로 하여 Fe(OH)$_2$로 철이 사진되어진다.

온작중의 철은 결정시킨 후 철은 주로 결정가에는 다른

Table 4 Fe concentration in leaching solution after oxidation and precipitation of ferrous sulfate by H_2O_2 and HNO$_3$

<table>
<thead>
<tr>
<th>Amount added (equivalent)</th>
<th>1.0</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2O_2 (g/L)</td>
<td>0.22</td>
<td>0.12</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Removal(%)</td>
<td>96.3</td>
<td>98.0</td>
<td>99.2</td>
<td>99.7</td>
<td>99.8</td>
<td>99.8</td>
</tr>
<tr>
<td>HNO$_3$ (g/L)</td>
<td>1.8</td>
<td>0.9</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Removal(%)</td>
<td>70.0</td>
<td>85.0</td>
<td>93.3</td>
<td>95.0</td>
<td>95.0</td>
<td>95.0</td>
</tr>
</tbody>
</table>

Fig. 4. Effect of time with different concentration of H_2SO_4 in solution on Ni and Fe extraction 70℃.
Table 5 Chemical composition of crystallized nickel sulfate

<table>
<thead>
<tr>
<th></th>
<th>Ni (%)</th>
<th>Co (%)</th>
<th>Fe (%)</th>
<th>Cd (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystallization</td>
<td>19.25</td>
<td>0.23</td>
<td>0.08</td>
<td>28</td>
</tr>
<tr>
<td>Recrystallization</td>
<td>20.3</td>
<td>0.20</td>
<td>0.01</td>
<td>10</td>
</tr>
</tbody>
</table>

증가하였으며 SK규격에 만족하는 황산니켈 6수화물(NiSO₄ · 6H₂O : nickel sulfate hexahydrate)를 제조하였다.

5. 결 론

Ni-Cd폐전지는로부터 유가공속의 회수를 위한 실험 결과 다음과 같은 결론을 얻었다.

1. 물리적 섬별을 통하여 폐전지 종류 중 49.3wt%의 니켈을 83.1%의 침출용 시료로 얻을 수 있었으며, 부산물인 50.7%의 철폴크롭에는 31.6%의 니켈을 함유하고 있어 fero-nickel로의 혈용이 가능하다.

2. 폐전지중의 Ni와 Fe의 침출시 Fe는 반응 초기에 급격히 침출되었으며, Ni의 경우 반응시간의 경과에 따라 지속적으로 침출율이 증가하였고, 황산농도 4.0 mole에서 침출시 99.6%의 니켈 침출율을 얻을 수 있었다.

3. 용액중 첼의 산화제로서 과산화수소수(H₂O₂) 및 질산(HNO₃)을 사용하였으며, 탄산니켈(NiCO₃)을 침가하여 용액의 pH가 4.5에 도달하면 Fe(OH)₃로 침전, 제거하였으며 침의 제거율은 최고 99.8%로 나타났다.

4. 탈취용액을 80℃로 기열·증발시켜 농축한 후 45℃부근에서 결정화를 행하여 KS규격에 만족하는 황산니켈 6수화물(NiSO₄ · 6H₂O : nickel sulfate hexahydrate)를 제조하였다

참고문헌

朴 度 鑫

· 1976 연세대학교 공과대학 금속공학과 석사
· 1979 연세대학교 대학원 금속공학과 석사
· 1987 호주 Monash University 화학 공학과 박사
· 현재 한국자원연구소 환경연구부 재임 연구원

孫 廷 秀

· 1985 서울대학교 공과대학 자원공학과 학사
· 1987 서울대학교 대학원 자원공학과 석사
· 1992 서울대학교 대학원 자원공학과 박사
· 현재 한국자원연구소 환경연구부 선임 연구원

자원리 thủy anon 레 8 권 제 5 호, 1999