Parameterization Model for Damaging Ultraviolet-B Irradiance

  • Kim, Yoo-Keun (Department of Atmospheric Sciences, Pusan National University) ;
  • Lee, Hwa-Woon (Department of Atmospheric Sciences, Pusan National University) ;
  • Moon, Yun-Seob (Department of Atmospheric Sciences, Pusan National University)
  • Published : 1999.04.01

Abstract

Since UV-B radiation measuring networks have not been established, numerical models which calculate the flux from other readily available meteorological measurements may play an important role. That is, such a problem can be solved by using parameterization models such as two stream approximation, the delta-Eddington method, doubling method, and discrete ordinate method. However, most UV-B radiative transfer models have not been validated with measurements, because such models are not intended as practical computational schemes for providing surface estimates of UV-B radiation. The main concern so far has been to demonstrate model sensitivity for cloudless skies. In particular, few have been concerned with real cloud information. Clouds and aerosols have generally been incorporated as constituents of particular atmospheric layers with specified optical depths and scattering properties. The parameterization model presented here is a combination of a detailed radiative transfer algorithm for a coludless sky radiative process and a more approximate scheme to handle cloud effects. The model input data requires a daily measurement of the total ozone amount plus a daily record of the amount and type of cloud in the atmosphere. Measurements for an examination of the models at the Department of Atmospheric Sciences, Pusan National University have been takenfrom February, 1995. These models can be used to calculate present and future fluxes where measurements have not been taken, and construct climatologies for the period before ozone depletion began.

Keywords