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The Nonlinear State Estimation of the Aircraft
using the Adaptive Extended Kalman Filter
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I . Introduction

Data processing of the aircraft’s flight test for
estimation of its dynamical model includes two main
stages [11[2]:

- Estimation of the state variables of the aircraft
motion on the basis of the application the Kalman
filtering approach to the nonlinear kinematics equa-
tions, as the systems model, for improving a
measured aircraft responses from the viewpoint of
their compatibility with the theoretical ones,

- Parameters identification of the longitudinal and
lateral aircraft’s linearized dynamics on the basis of
choosing one of the methods: least square, maximum
likelihood, Kalman filtering or their combinations by
using the filtered data obtained at the previous stage.

- The measurement noises and biases, which are
inherent to all airborne sensors, cause the biased
estimates of dynamics model’s parameters, so
minimization of harmful results of these factors at
the first stage of the data processing is the very
important task. In a case of the light and ultralight
aircraft its importance is essentially increasing due to
the high intensity of these adverse factors. The
reason is the very restricted space inside small air-
craft and rigid limitations on weight of all on-board
equipment, which sometimes don’t permit to install
more precise sensors with good vibration isolation as
well as poor quality of the on-board power supply.
In this situation the preliminary data processing on
the basis of the extended Kalman filter (EKF) has to
suppress noises with high intensity and simul-
taneously to detect the biases of sensors, which are
weakly observable. These requirements are con-
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tradictory to some extent, so to satisfy them it is
necessary to apply some innovative procedures of
EKF. Here one version of such procedures is
proposed, which is based on the combination of
above methods:

- Regular Kalman filtering procedure, improved by
the square root factorization of the covariance matrix
of the state variables, for achieving the enhanced
convergence of the nonlinear Kalman procedure in the
presence of the intensive noises,

+ Adaptive feedback, based on the innovations and
Robbins-Monroe stochastic approximation procedure,
for detecting some weakly observable variables, such
as the sensor’s biases.

The efficiency of this procedure is proved by
simulation of the longitudinal motion of the aircraft
and measurements with the stochastic noises.

II. The aircraft's state estimation on the basis of
the extended Kalman filter in general case of
the 6 degree—of-freedom motion

The main theoretical background of this approach

is the nonlinear kinematics equations of 6 degree—of~
freedom (6-DOF) solid body motion as the mathe-
matical model of the dynamic system, whose state
space variables must be determined on the basis of
the output parameters measurements [1][2]. Measuring
system which was described earlier permits to
measure all parameters of flight practically, which
could be divided into three categories [1][2]:

input variables: ax, ay, a- - horizontal, lateral and
vertical accelerations respectively, p, g, r - angular
velocities (roll, pitch, yaw respectively), which form
an input (control) 6 X1 vector

u-= [ax, ay, a: p, q, rl’ = [U1, Uz, U3, W4, Us, U6],
- state-space variables: u, v, w, A - horizontal,
lateral and vertical linear velocities and height, ¢, 8,
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¢ - roll, pitch and yaw angles respectively, these
actual state-space variables form a 7X1 dimensional
vector, Xa.
xa = [u, v, w he,d,¢1 = D, x, x3, x4, x5, X5, x7)'
- output (measured) variables: Vi, hn - true airspeed
of aircraft and the altitude, am, Bm, @m, Om, ¢m -
measured angle of attack, sideslip, roll, pitch and
yaw,; they form an output 7X1 vector:
Y=V, @m, B bim, @m, Om, ¢ml' =31, ¥2, y3, ¥4, ¥5, y6, ¥7I'
Input and output variables are measured from the
real measurement system having its own errors
which could be represented as the biases, scale errors
and random noises, the first two being deterministic
and the third being stochastic. So in the general case
each arbitrary input and output variable, zi, could be
represented as following:

zi= 1+ A1) z; + by + ny (1)

where Az, bz, nz stand for scale factor, bias and
random noise respectively and z; is a true value of
parameter z. As it was recommended in [1](2], the
scale factors has to be mputted only for Vi, @¢m and
Bm and in the other variables they could be omitted.

The approach for the estimation not only state
space variables but the biases and scale errors
simultaneously in the flight tests data processing is
based on the idea of including of these errors as the
dummy variables whose derivatives are equal to zero
in the state-space description. These variables extend
the dimension of Kalman filter and basically could be
estimated during standard Kalman filtering procedure.
So the actual state space vector x; has to be
extended by dummy vector xg formed of components
bsi and A, determined from (1), and the full vector
of state space variables x would be the following: x
= [xq, x4l’. This vector has to be defined in a Kalman
filtering procedure.

In a general case state-space description of nonli-
near system is described by the following equation:

2D = fLx9, w®, A+ g x(d, u®, n(t),t](z)

¥ =kl x(D, uld,f] + o(d

where f, g, h are differentiable nonlinear vector
functions. It is assumed that the process and
measurement noise n and e affect the dynamic
system linearly. They are assumed to be characteri-
zed by a zero-mean white Gaussian noise and are
considered to be uncorrelated. In the particular case
of the nonlinear kinematics equation of aircraft,
dynamic system can be derived as following differen—
tial equations:

- state equations:

#u = —qw+ rv+ a, — gsiné
v = pw— ru-+ a, + g cosf sing

w = qu— pv + a, + g cos@ cos¢d

h = wusind — v cosf sing — w cosf cos¢
:¢ 1 singtand cos¢ tan b
01 =0 cos¢ —sing || a 3)
¢ 0 singsecd cos¢secdl| »

- observation equations:
Ve = A+ V P+ o2+ w?

an = (1+4,) tan 7 [HE2Ee= LY ]

/3m= (1+AB) tan—l [v_—g;??ﬁi
hy =
S = &
0 = 0
b = ¢

where the notations of all variables are explained
earlier. Now all input and output variables in (3)
could be expressed with their errors in the general
form (1). Introducing the dummy vector xq = [xsx0,x10,
X11,X12,X13,X14,X15,X16,X17,X18,X19,%20,%21,%22,X23] " = [Biax,bay,Baz,bp,
bg,brbv,babsbrbebeby, Av,Aa,Agl’, where subs-
cripts denote the biases and scaling errors of
corresponding actual variables, system (3) on the
basis of (1) could be rewritten in the following form.

(4]i5]):

X| = XoUg— XoX13— X35+ XX — g sinxg+ u; — x5+ &)

Xy =— X Ug+ X1 %13+ K32y — X3xy, + & sinxg cosxg+ up— x5+ &,

X3 = X Us— X1X13 — Xa Uy T Xox11 + & coSx5 cosxg+ uz—x9+ &3

X4 = x,Sinxg— Xy SInx5C08 X5 — X3 COSX5C08 X5+ &4

X5 =— %1, — XppSinxstan xg — ¥15008 xstan xg + u, + ussinxstan xg
+ ugcosxstanxg — &

Xg = 5008 X5 — UgSINxg — X12COS X5 + X138inxs — &g

X7 =— XSinxzSecxg — X13C0SX5SeCc ks + UsSinxssecxg
+ ugcosxssecxg— &y
Xy = 0
x3 =0 (4a)

v =AWV %0+ %20+ 237 +xuto

1 X3t CQus— 290~ (ug~ x11)y
¥z =(1+ xz)tan 1[ 3 : 12x¢11 i a]+x15+ﬁz
ol xo—(ug—x9)xs— (uy— x11)2
V3 =(1+x23)tan 1 2 § 13 xf 4 1end +x16+03
Yy =x4 + xp + o4
¥ =x5 + x5 + 05 (4b)
Yo =x5 + X9 + 0

Yo =x1 + x t+ o7

Here the system (4a) describes system of the
state-space equations and (4b) describes nonlinear
measurements, o©; are the noises of the output
variables sensors. The constant values x., X5, Yo
and zs in the 2nd and 3rd equations (4b) denotes the
projections of the locations of a@- and A -sensors
from the center of gravity at the aircraft body axes.
The process noises ¢; are related to the noises of
accelerometers and rate gyros (11=Nag2=Nay,3=Naz,l4=1p,
ns=ng,s=nr) by the following system of equations:

& 0 x3 —x 0}[my n
G|l = |—x 0 x O||m | _ |2
§3 Xy — X 0 0 R n3 (53)
&4 0 0 0 olL 0 0
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&s 1 sinxs tanxg cosxs.ta.nxs 7y
&G | =10 CoS x5 — sinxg N5
& 0 sinx; secxg cosxs secxg| | g

If the noises ni are not correlated, covariance
matrix @ of this noise vector would have the form:
Q= diag [ } + 2508 + x508 ;
a§+x§o§+x%o‘§ 3
03 + x50} + xlof ;
% + ( sinxstan xg) 0f + ( cos xstanxg) s ; (5b)

cos x50% + sin xg07 ;

( sinxg )20§+( C0S X5 )20% .

cosxg COSXg

where o; denotes the rm.s. of the measurement
noise of the corresponding input variables sensor.

As it is known [1]-[3][5], the discrete Kalman
filter for the nonlinear system (4), (5) can be
represented as the following iterative form (which is
known as P. Joseph form [4][5]):

x(i+1/) = x(D+f[x0), u(), n(H=0] - at
P(i+1/i) = A} PGH A D"+ B() Q1) BT (g)
K(Gi+1) = P(i+1/) H G+ 7

[HG+1D) PG+1/) H G+ T+ R !
x(G+D)=x2(i+1/D+ KG+D(y(G+1)
=kl x(i+1/9), u(i+1), p=0)]
P(i+1/i+D)=[I- K(G+1) HG+D]IP(i+1/3)
[ I- KG+1) HG+D]T+ KG+1) R K (i+1)

where the matrices A, B, H are the Jacobians of the
nonlinear vector functions:

A() =1+[—‘91i ]-At
dx x=x(3)
B() - [9sg C At
on x=2x(?)
H(i+1) = [M ]
0x | s=xivi/n
of ) .
where [ ax | .o M] is defined from the system (4a),
~[2 )
I is 23X23 - unit matnx, B= on x=x(0] Al s

! Hz[ﬂ ] .
defined from the system (5a), 0% | pmsirynl 18
defined from the (4b). The matrix P is a covariance
matrix of the state-space vector x, the matrix K is a
covariance matrix of the vector of the measurements
noises and At stands for the sampling interval.
Although the components of Jacobian matrices are
used in the data processing algorithms, these
Jacobian matrices have cumbersome expressions that
they are not brought here. In the isolated longitudinal
motion, it is expedient to use and make the
description of the filtering procedure more simple and
transparent. Nevertheless this case is very important
for the practical applications and from this viewpoint
it has its own independent importance.

M. The aircraft’'s state estimation in the isolated
longitudinal motion
In this case, it is assumed that B=¢=¢=0, a,=0,

HOt- XIS8t - ArEIBSt =2A1 W53 H235 1999 2

v=0, the kinematics equations (3) would have more
simple form:

If

—qw + a, — gsind
qu + a,+ gcosb )

q
using + wcosd

> SR

I

Introducing the vector of state-space variables, x =
[uw, 8 ,AbAxbazbebV,bababrl =[x, -, xul’, it is
possible to write state-space nonlinear equations for
longitudinal motion kinematics of the system (7) as
follows:

X = —Xpus+ xpx;— X5 — g sinxs + g — &

Xy = XUs— XX — X+ & cosxst uy— &y

X3 = —xtus— & (8)
%y = x sinxsz+x, cosxy

x-d = 0

where xq is the dummy vector: x¢ = [bax,baz,bg,bv,b2,b
8 .br) = [xs, =+, xnl’.

Noises of the state space variables &1,&2 {3 are
related to the noises of the sensors of ax(mi), a=(n2),
q(ns) via the following equations:

& = —xp e m3tmy
{2 = xl‘n3+ﬂ2 (9)
& = n3

Description of the nonlinear observations (measure-
ments) equations have the form:

V x12+ sz +x8+p1

N =
_ -1 % —(us— %1) * %4
Vo = tan [ x +x9+p2 (10)
Y3 = x3 + x9 T 03
Yo = x4+ 2y + oy

Equations of systems (7) - (10) are the basis for
the creation of the testbed for the development and
investigation of the Kalman filtering algorithms for
nonlinear kinematics equations.

IV. Simulation architecture
The block diagram for the simulation of the
nonlinear Kkinematics equations is represented at the
Fig 1.

u N ™
» -~
BlOCK1 w N Block2 Symp—
» T3
q »i  Ideat Kinematics —— |
Generation of LOM > Equations (7) e ot 1
[:] » D-&— 9 | |
f !
Ax Az q { : | |
R v y VvV il :
BIOCK 4 Ay BLOCK3 ' h
< z |
Nonlinear State-Space q" Contamination Inputs | | | |
Equations (8) < with Noises and Biases 1 : )
I
____________________ R :
un| wo| an] @ | Iyl 1
L 4 Vi T
> BLOCKS 111
BLOCKS an T
| o -
1 State Estimation le—1— 1|
Model of Measurements with Om !B Algorithms (EKF) !
Nokses and Biases (10) [he : e !
3 N ]
T 1
1 ]

Fig. 1. Block diagram of the simulation system.
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The simulation target model is the 100-seat middle
range aircraft. It is equipped with 2 turbofan engines
and the maximum take-off weight is 98000 lb. In
simulation the flight data has been acquired by using
this model aircraft. The trimed true airspeed is 870
ft/s, altitude is 35,000 ft and time interval (At) is
0.01 second.

At this figure Block 1 represents the generator of
the longitudinal motions of the aircraft during the
flight testing. As it is known, the trapezoidal control
actions on the control surfaces are the most
informative, on the other hand the most acceptable
from the viewpoint of the its realizability by pilots.
So Block 1 is designated for the generating of the
sthoothed trapezoidal elevator input which are very
similar to the control actions, produced by pilots
during the flight test. The period of oscillations and
their duration are chosen to be compatible with the
short- and long- period modes of the longitudinal
motion of aircraft under investigation.

Block 2 represents the simulation of the "ideal”
kinematics, described by the system (7). Simulated
(true) variables us, ws, 8s and hs are used later for
the comparison of the predicted by Kalman filter
values of variables. Other outputs of this Block 2 (a,
a: q are used for the producing of the “conta-
minated” variables, which represent the outputs of
the corresponding "actual” sensors. The contamination
of these variables with noises and biases are made in
the Block 3.

Block 4 with state-space variables, which are
produced by input signals alongside with their noises
and hiases, is described by the equations (8). Block 5
represents the output observations of components of
the vector y with the noises and biases inherent to
the "actual” sensors and it is described by the
system (10). Outputs of Blocks 3 and 5 are those
signals ,which have to be processed by the filtering
algorithm in the Block 6. So "true” values of the
biases ("dummy” variables) are known before the
data processing as well as the "actual” ones.

Finally it is necessary to notice that in this case
the scale factor errors were not included in the model
of measurements. It is known that if the number of
the estimated parameters ("dummy” variables) are more
than the sum of the number of the measurements
and "actual” state-space variables, the task would be
overparametrized, thus preventing confident and
stable results.

V. The extended Kalman filter for the nonlinear
state estimation

As it is known, the strict mathematical proves of

the optimality of Kalman filtering exist only for linear

case. In nonlinear case it is possible to speak only

about suboptimal estimations. Nevertheless it is
expedient to use the main results of the linear theory
for the substantiation of the choice of algorithms for
nonlinear case.

The data processing of the real experimental
signals very often requires the application of methods
which possess enhanced convergence in the presence
of noises with high intensity.

The problem of convergence of the Kalman filter
is more hard in the nonlinear case. In this situation
the experience of previous investigations [1]-[5]
shows that good convergence of the square root
factorizations methods. These methods guarantee the
positive definiteness of the covariance matrix P at
each stage of the process of filtering and good
conditionality of the matrix H(i+1) - P(+1/i) - H(i+1)"
in the third equation of the system (6), thus
preventing the divergence of the Kalman filtering
procedure. There are several types of these pro—
cedures, which produce practically the same results,
so here it was chosen the A. Andrews algorithm,
based on the Cholesky’s factorization of the square
symmetric matrix P, which represents matrix P as:
P=s-: sT, where s is the upper triangular matrix.

In existing literature Andrews algorithm is des-
cribed only for linear case [41[5], so its application
for the nonlinear case is to some extent a new
result. The sequence of iterations of Andrews
algorithm in this case, described by the system (2),
is the following:

- State-Space propagation:

x2(i+1/9) = 2D + FL 20, u(d]- ot (11a)

- Linearization of the nonlinear functions:

A = _aa{c‘ =m], A = I+ A - ot
— [_of
B(i) B [ on x=x(t)] et (11b)

H(i+1) = [g—’;

x=x(i+1/t')]
- Covariance matrix propagation, using Cholesky
factorization
P() = s(i) - s()7
p(i+1/)) = A@) - () (11¢c)

sG+1/D =[ ¢ (i+1/9) - ¢(i+ll/i)T
+ B() Q) B(H " ?
- Cholesky factorization of the matrices, which define

the Kalman gain matrix K(i+1) and calculation of
matrix K(i+1):

FGi+1) = s(i+1/) - H G+ 7T

Gl+D =[ F G+D T+ Fu+D+ R1? , _ (k)
KGi+1) = sG+1/) - FG+1) - GG+D ™" ¢ G+

+ Calculation of innovation vector - in(i+1), filtered
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Fig. 2. Results of Kalman filteration.

state-space vector - x(i+1) and the Cholesky factori-
zation s(i+1) of the updated covariance matrix:
in(i+1) = y(i+1)—[aGi+ 1)+ HG+ D[ 2(+1/9)— x()]]
x(t:+1) = x(f'+1/i)+ K(H_l),. in(i+%) . (11e)
s(i+ D) = s(i+ /) - [ I- F(ljl)_IG(hLl)
- ( G ((+D+ R*) F (i+D]
In this paper, above procedure is converted into the
program and used for the data processing.

It is necessary to notice that for the improvement
of accuracy of results this filtering procedure includes
not only the first order Taylor expansion of the non-
linear vector - function flx(t), u(®)] of the state-
space variables but also the quadratic approximation:

AG) = I+ Ay(D) - ot + Ay(d) - —%—(Atz)

MOt - XSt - AAEIESH =2A

H5H H25 199 2

25
where the Az(z')=[ g .
x

second derivatives. However this including didn’t im-
prove estimations essentially, the difference between
more precise 2nd-order and the 1st order appro—
ximations were very small. Nevertheless this 2nd-
order approximations were included in the procedure
optionally.

At the Fig 2. some results of Kalman filtration
based on the target model aircraft are represented:
Fig 2. represents the filtration of pitch angle, the
altitude, the angle of attack and the true airspeed. As
it is possible to see from these pictures the predicted
values are free from noises and biases and are very
closed to the true values. Nevertheless there are
some difficulties in the estimation of some biases:
biases of the accelerations and the pitch rate could
not be estimated. From the practical viewpoint it is
very important to comprehend the reason of these
difficulties.

] is the matrix of the

r=x]

VI. Observability conditions of the nonlinear Kalman
filtering

From physical viewpoint the reason is the absence
of these variables in the output signals model,
described by the system (10). Only variable x7 = b, is
present in the observations with small coefficient of
x, but the further analysis shows, that it is not
sufficient.

From the mathematical viewpoint the matter of
problem is the violation of the observability con-
ditions. The strict Kalman observability conditions
are valid for the linear systems, but in this case,
when the nonlinearities are differentiable, it is
possible to use as the first approximation the obser-
vability conditions for the linearized time-varying
system. The possibility of applying of these con-—
ditions for time-varying systems was proved in
[41[7]. For the i—th sampling moment, the Jacobian
H(i) of the nonlinear vector-function of measure-
ments in the case (10) has the following form:

ah ah
—axl(z) -“‘axz(z) 0000 }? 1000
ah ak a
H()= ——axz(z) ———axl(i) 0000 ax7(’) 0100 (12)
0 0 1000 0 0010
0 0 0100 0 0001

As it could be easily noticed that this matrix is
sparse and it is the reason of the singularity of
observability Gramian Ge of linear discrete time-
varying system [4][7]. The observability Gramian
matrix of linear dynamic system model over a
discrete time interval can be defined as following [4}:

G HG), A(),1<i<N)

~(& [T ac-2]" mo™ w6 [T a6-5))

13)
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where A(i) is the state transition matrix. Our
analysis indicates that the state variables x5=bax,
X6=bar, and x7=b,. are unobservable due to rank
deficiency of observability gramian in (13).

Nevertheless, even for observable biases (bv, b, bg,
br) the convergence of Kalman procedure is weak
sometimes, because the coefficients in the last 4 rows
of the Kalman gain matrix K(i+1), which are related
to these variables, appears to be small at each step
of the filtering procedure, thus causing weak
convergence of Kalman procedure.

Strictly speaking, the structure of actual Afilter
affects the observability of system, because this stru-
cture determines aforementioned coefficients. So it is
necessary to underline that the square-root factori-
zation algorithms for Kalman filtering were chosen
intentionally as the most robust algorithms, which are
now widely used in these tasks, especially for
practical purposes.

It is the property of square-root factorization
algorithms of Kalman filtering, because their increas-
ed robustness suppresses "dummy” variables. From
the other hand these algorithms now are the most
wide-spread in the identification and filteration tasks
especially in the presence of the intensive noises.
And it is very desirable to improve them from the
viewpoint of better observability of the “dummy”
variables. To achieve this goal adaptive algorithm
was applied.

The performance criterion of this algorithm is the
maximum likelihood of the vectors x(i+1) and yi(i+1)
= [y(i+1), ..., y(i+k)] estimation [5]:

MAX In I [ x(i+1), YEGi+1D ]| y(d), P0), Q3), R]

x(3), P(0), Q(7), R
where II[ -] is the conditional density of pro-
babilities, P(Q) is the initial value of the covariance
matrix. The algorithm differs from the usual Kalman
algorithms only by the method of the calculation of
the Kalman gain matrix K, which is defined by the
following iterative procedure [5]:

M= [in(i+1) - in G+DT,~, inGi+8) - in G+H 7T

S =[ HG+1), HG+2) - A, -, Hi+H - A717

S*=( 8"s)'.s7 (14)

KG+D=a¢t - 8- M- [ inG+1D) - in G+1DT 17}
where S~ denotes the Penrose-Moor pseudoinversion
procedure and At is the sampling interval. As it
could be seen from this procedure the matrix K is
estimated on the basis of k steps of observations,
matrices M and S being filled step by step. The
value of k is chosen between 4 and 6. Insofar as
pseudoinversion procedure requires the full rank of
the matrix-operand, this procedure in this case was
applied only to truncated dummy vector with obser-
vable components, so it was essentially simplified.

Moreover it is necessary to notice, that this
procedure uses the stochastic values of innovations,
which are averaging at the short time period, so
resulting values of K, would have stochastic
components. As it is known [5][6], the estimation of
the constant parameters in this case could be
improved on the basis of stochastic approximation
procedure. It is quite sufficient to apply here the
simplest Robbins ~Monroe procedure at least at the
beginning of the Kalman filtering (the first 10 - 20 %
of the length of all records to be processed). Using
all these methods it is possible to write the
expression for adapted Kalman gain matrix in the
following form:

K, (i+t]1) = K(i+]) + K; - K,(i+1) (15)

where K(i+1) is defined from the iterative subproce-
dure (11d), K, is defined from iterative subprocedure
(14), Kj; is the stochastic approximation gain at the
restricted time interval:

K, = —1 (if i<j), or —% (if i>7) (16)
J stands for the working period of stochastic
approximation procedure (0.1 -0.2) -+ N, N is the total
length of processed signals. The value of j is used
as a tuning parameter of adaptation. For short-period
state variables (angular variables) this parameter
appears to be several times less than the long-period
(linear) variables. The adapted Kalman gain (15)
together with (14), (15) is used instead of usual
Kalman gain matrix K(i+1) in the second expression
of the subprocedure (1le).

Table 1. Results of bias estimated.

—
Bias bv b, be bn

True value -5.0 +0.01 -0.00 +5.0

Estimated value

(Andrews algorithm) -5.270 | +0.0104 | ~0.0503 | +5.460

Estimated value

(Adaptive algorithm) -5.165 | +0.0103 | -0.0499 | +4.854

The application of this procedure to the longitu-
dinal motion Kinematics equations permits to obtain
more stable and accurate results in comparison with
the Andrews algorithm as shown in Table 1. Results
of bias estimation, using this algorithm, are repre-
sented in the Table 1.

Fig 3. represents the behavior of corresponding
bias estimates based on the adaptive algorithm during
the process of Kalman filtration. Fig 4. represents the
correlation function of innovations, whose mean
values are equal to zero. The last graphics
demonstrate that innovations could be considered as
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Fig. 3. Results of bias estimated by adpative
Kalman filter.
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Fig. 4. Results of correlation functions of inno-
vation.

a white noises. This fact proves the proximity of
state estimates to the optimal ones.
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. VI. Conclusion

In the presence of intensive noises and biasing,
which are inherent to the measurement process in the
flight test, one of the most promising ways to obtain
confident results in the parameters of aircraft’s flight
dynamics identification is the application of a
two-stage procedures, aircraft’s state estimation on
the basis of nonlinear Kalman filtration and para-
meter identification on the basis of the maximum
likelihood approach in the combination with the
Kalman optimal observation.

Since the procedure of Kalman filtration in
nonlinear case has essential difficulties connected
with poor convergence, estimation biases etc., for
improvement of its efficiency it is expedient to apply
the following mathematical methods and correspon-
ding software:

+ the checking Kalman observability conditions before
the running of filtering procedure to detect unobser-
vable variables; in this case it is necessary to
exclude them from this procedure;

- the application of the procedures using the factori-
zation of the state vectors covariance matrix P, such
as Andrews, Bierman and others [4][5];

- the application of adaptive Kalman procedure with
the feedback on innovations and stochastic approxi-
mation to improve the estimation of the slightly
observable biases.
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