Analysis on Enzymatic Browning in Pine Needles

솔잎에서 발생하는 효소학적 갈변작용에 관한 분석

  • Kong, Kwang-Hoon (Department of Chemistry, College of Natural Science, Chung-Ang University) ;
  • Park, Hee-Joong (Department of Chemistry, College of Natural Science, Chung-Ang University) ;
  • Choi, Sang-Sook (Department of Chemistry, College of Natural Science, Chung-Ang University) ;
  • Cho, Sung-Hye (Department of Chemistry, College of Natural Science, Chung-Ang University) ;
  • Kim, Yong-Tae (Department of Chemistry, College of Science & Engineering, Aoyama Gakuin University)
  • 공광훈 (중앙대학교 자연과학대학 화학과) ;
  • 박희중 (중앙대학교 자연과학대학 화학과) ;
  • 최상숙 (중앙대학교 자연과학대학 화학과) ;
  • 조성희 (중앙대학교 자연과학대학 화학과) ;
  • 김용태 (청산학원대학 화학과)
  • Received : 1999.02.03
  • Published : 1999.06.25

Abstract

Tyrosinases are related to the enzymatic browning of plants and attract the major scientific interest for the prevention of it. Three tyrosinase isozymes ($P_1$, $P_2$ and $P_3$) from pine needles were purified to homogeneity and characterized the factors that affect their activities. The L-ascorbic acid and ${\beta}$-mercaptoethanol notably inhibited the enzymatic activities of the three isozymes. The sodium diethyldithiocarbamate was a competitive inhibitor of isozymes with the $K_i$ values of $P_1$(0.030 mM), $P_2$(0.015 mM) and $P_3$(0.019 mM), respectively. Their enzyme activities were however, increased by the addition of most metal ions. The optimum pH for the three isozymes was 9.0~9.5 and the optimum temperatures ranged from 55 to $60^{\circ}C$ using L-DOPA as substrate.

Tyrosinase는 식물의 갈변현상에 관계가 있으며, 이의 방지를 위한 방법의 개발은 과학적인 관심사가 되고 있다. 솔잎으로부터 3개의 tyrosinase isozyme을 정제하여 그들의 활성에 영향을 주는 인자들을 분석하였다. L-ascorbic acid와 ${\beta}$-mercaptoethanol은 효소의 활성을 크게 저해하였다. 또한 sodium diethyldithio-carbamate도 효소활성에 대한 경쟁적 저해제였으며, $K_i$ 값은 $P_1$(0.030 mM), $P_2$(0.015 mM), $P_3$(0.019 mM)이였다. 반면 대부분의 금속이온들은 효소활성을 증가시켰다. L-DOPA를 기질로 사용했을 때 효소의 최적 pH는 9.0~9.5이며, 최적 온도는 $55{\sim}60^{\circ}C$를 나타내었다.

Keywords

Acknowledgement

Supported by : Korean Ministry of Education

References

  1. Ann. Rev. Biochem. v.34 H. S. Mason
  2. Alkaloids v.36 R. Crippa;V. Horak;G. Prota;P. Svorornos;L. Wolfram
  3. Phytochemistry v.26 A. M. Mayer
  4. Physiologia Plantarum v.72 C. V. Kevin;R. L. Alan;O. D. Stephen
  5. Phytochemistry v.18 A. M. Mayer;E. Harel
  6. Biochem. Mol. Biol. Int. v.45 K. H. Kong;J. L. Lee;H. J. Park;S. H. Cho
  7. Korean Biochem. J. v.25 C. K. Sung;S. H. Cho
  8. J. Biol. Chem. v.193 O. H. Lowry;N. J. Rosebrough;A. Lewis Farr;R. J. Randall
  9. J. Food Sci. v.38 N. d. Benjamin;M. W. Montgomery
  10. J. Agric. Food Chem. v.39 J. S. Chen;C. I. Wei;R. S. Rolle;W. S. Otwell;M. O. Balaban;M. R. Marshall
  11. Phytochemistry v.31 S. U. Pathak;S. K. Kayekar;V. S. Ghole;M. V. Hedge
  12. Phytochemistry v.34 J. Raymond;N. Rakariyatham;J. L. Azanza
  13. J. Food Sci. v.43 D. H. Halim;M. W. Montgomery
  14. J. Food Sci. v.20 M. Siddiq;N. K. Sinha;J. N. Cash;T. Hanum
  15. Phytochemistry v.27 S. F. Alvaro;B. Roque;C. Juana;G. C. Franciscio