Environmental Tolerance for Pollutants in *Littorina brevicula* (Philippi)

Pyung CHIN, Jung Ah LEE, Yun Kyung SHIN and Jung Sick LEE*
Department of Marine Biology, Pukyong National University Busan 608-737, Korea
*Department of Fish Pathology, Youn National University Youn 500-749, Korea.

*Littorina brevicula*, a common small herbivorius gastropod, inhabits in almost every rocky and/or boulder shores of Korea with high density. The survival rates and oxygen consumption rates of this species exposed to tributyltinchloride (TBTCl), mercury (Hg) and cadmium (Cd) were investigated according to temperatures (15, 23°C) and individual sizes (12 ± 0.5, 5 ± 1 mm). At temperature 15°C, acute inhibitory concentrations for large (12 ± 0.5 mm) and small (5 ± 1 mm) size individual showed that 13 day-L50 of TBTCl were 0.87 and 0.65 ppm, respectively, 11 day-L50 of Hg were 5.55 and 2.85 ppm, respectively and 9 day-L50 of Cd were 13.77 and 8.46 ppm, respectively. At 23°C, acute inhibitory concentrations of pollutants on the large and the small size individual showed that 8 day-L50 of TBTCl were 0.68 and 0.15 ppm, respectively, 5 day-L50 of Hg were 10.41 and 5.73 ppm, respectively, and 4 day-L50 of Cd were 13.31 and 4.47 ppm, respectively. The order of toxicity on the species was TBTCl > Cd > Hg. Oxygen consumption rates during exposure to TBTCl, Hg and Cd toxicity were decreased more in small size than in large size individual at 15 and 23°C.

Key words: *Littorina brevicula*, Acute toxicity, L50, TBTCl, Cd, Hg

---

본 연구는 1997학년도 부경대학교 기생학연구비의 수혜를 통하여 이루어졌음.
재료 및 방법

실험동물인 총알고등은 1997년 11월부터 1998년 8월에 걸쳐 부산광역시 동백섬 조간대에서 채집하여, PVC 수조 (40ℓ)에 적당한 밀도로 넣어 수조의 1/3로 해수를 체우고 샌스를 공급하면서 1주일 동안 응시시켰다. 실험에 사용한 개체의 크기는 큰 개체의 경우 12 ± 0.5 mm, 작은 개체는 5 ± 1 mm로 실험에서 사용하였다. 실험시 해수의 알칼리도는 32 ± 1 %였으며, 명암은 12L: 12D로 조절하였다.

실정용액은 TBTCi (Fluka Chemie AG CH-9470 Buchs, Assay 97% (AT))의 경우, TBTCi를 아세토네 1:2의 비율로 용해시켜 증류수로 1 g/L의 표준용액을 만든 다음, 실험시 해수로 회석시켜 조제하였다. 증류수의 경우, 수은 (HgCl₂) 주 필드 (CaCl₂: 2.5H₂O) 증류수에 녹여 1 g/L의 표준용액을 만든 후, 해수를 결정시켜 조제하였다. 모든 대조구의 실험해수는 TBTCi와 증류수가 청정되지 않은 자연 해수를 사용하였다. 실험동물의 처방수는 TBTCi의 경우 0.3, 0.7, 1.1 및 1.5 ppm, Hg는 5, 9, 13 및 17 ppm 그리고 Cd는 3, 7, 11 및 15 ppm으로 설정하여 수온과 개체 크기별로 행하였으며, 실험수온은 15℃와 23℃로 설정하였다. 본 실험은 환수시험방법에 의해 실시하였고 완수는 수질적황을 고려하여 매일 새로운 용액으로 교체하였다. 실험동물은 5ℓ용 polystyrene (PT) 사각수조에 큰 개체 20마리와 작은 개체 20마리로 각각 일정한 크기로 선택해서 넣고, 4ℓ의 실험용액을 체우고 중의 특성상 가려 오는 것을 막기 위하여 둘 사이에 스티로폼 묶음을 만들어 덮고 사소토공을 공급해주었다. 폐사 측정은 매일 오전 생물의 상태를 조사하고 가는 척자를 이용하여 조심스럽게 자극을 줄 뒤 반응하지 않는 것을 사망으로 간주하여 사망비율을 파악한 뒤 사망률로 나타내었다. 각 오염원에 투입시킨 총알고등의 산소 소비율은 실험의 종료시점에서 살아있는 개체만을 섭취하여 산소 점령량 (YSI 5800)을 이용하여 측정하였다. 산소소비율의 단위는 mg O₂/mg dry wt/day로 표시하였으며, 중이에서 mg O₂로 나타내었다. 각 오염원별 일정시간 반수치성능은 probit 분석 (Finney, 1971)에 의해 산출하였다.

결 과

1) 사망률과 반수치성능 (LC₅₀)
총알고등에 미치는 TBTCi, Hg 및 Cd의 금성독성실험은 수온 15℃와 23℃에서 개체 크기별로 일정한 밀도로 각 오염물질에 따른 반수치성능 (LC₅₀)과 사망률을 구하였으며 결과는 Table 1 그리고 Fig. 1과 2에 나타내었다.

![Fig. 1. Toxicity lines of TBTCi, Hg and Cd on Littorina brevicula at 15℃ and body size; L: Large size, S: Small size (duration exposed to each pollutant: TBTCi, 13 days; Hg, 11 days; Cd, 9 days).](image)

Table 1. Littorina brevicula. Estimated LC₅₀ for exposure time by probit scale analysis at 15 and 23℃ - small size and large size individuals

<table>
<thead>
<tr>
<th>Size</th>
<th>Pollutants</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>TBTCi</td>
<td>*4.50</td>
<td>*4.06</td>
<td>*4.73</td>
<td>*6.85</td>
<td>*6.21</td>
<td>*5.15</td>
<td>4.50</td>
<td>2.17</td>
<td>1.87</td>
<td>1.64</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Hg</td>
<td>*4.35</td>
<td>*8.04</td>
<td>*5.73</td>
<td>*4.22</td>
<td>11.58</td>
<td>4.74</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>*4.50</td>
<td>*4.47</td>
<td></td>
<td></td>
<td>8.46</td>
<td>2.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td>TBTCi</td>
<td>*2.17</td>
<td>*1.85</td>
<td>*1.20</td>
<td>*0.68</td>
<td>5.24</td>
<td>17.59</td>
<td>5.55</td>
<td>1.58</td>
<td>1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hg</td>
<td>*13.33</td>
<td>*10.41</td>
<td>*1.27</td>
<td></td>
<td>27.40</td>
<td>17.59</td>
<td>5.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>*13.31</td>
<td>*2.69</td>
<td>*1.42</td>
<td></td>
<td>13.77</td>
<td>8.09</td>
<td>2.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signal * is values at the 23℃ experiment.
1. 총알고등어 먹치는 유기추석 및 중금속의 급성독성

수온 23℃에서 큰 개체의 경우 5일-LC₅₀은 TBTCI에서 2.17 ppm, Hg에서 10.41 ppm이었으며 Cd에서는 2.69 ppm이었고(Table 1), 작은 개체의 경우 4일-LC₅₀은 각각 4.06 ppm, 8.04 ppm 그리고 4.47 ppm으로(Table 1), 수온 15℃의 마찬가지로 TBTCI의 저해 영향이 가장 크며(p<0.05), 개체크기를 적은수록, 수온이 높을 수록, TBTCI 및 중금속 오염원의 저해영향이 큰 것으로 나타났다(p<0.05).

Fig. 1과 2는 수온 15℃와 23℃에서 개체 크기에 따른 각 오염원의 독성점영상을 나타낸 것이다. 각 수온별 오염원의 영향은 큰 개체에 비해 작은 개체에서 많이 발생하였으며, 특히 23℃에서 작은 개체의 Hg의 농도증가에 따라 그 내성이 크게 감소하는 것을 볼 수 있었다.

수온 15℃와 23℃에서 각 오염원에 대해 작은 개체의 LC₅₀에 대한 큰 개체의 LC₅₀의 비를 Table 2에 나타내었다. 모든 오염원에서 LC₅₀의 비가 1보다 줄었으며, 15℃에 비해 23℃에서 크게 나타나 작은 개체와 큰 개체오염원의 영향을 많이 받는 것으로 나타났다.

2. 산소소비율

수온 15℃와 23℃에서 개체 크기에 따라 TBTCI, Hg 및 Cd의 급성독성점영상을 알아보기 위해 각 오염원별로 농도의 증가에 따른 산소소비율을 Fig. 3에 나타내었다.

TBTCI에 포함된 총알고등어의 산소소비율은 수온 15℃에서 큰 개체의 경우 0.3 ppm에서 2.31 mg O₂/mg dry wt/day이었으며 수온 23℃에서 큰 개체의 경우 0.79 mg O₂를 나타내었다. 작은 개체의 경우, 0.3 ppm에서 8.39 mg O₂였으며, 역시 TBTCI의 농도 증가에 따라 감소하며 1.5 ppm에서 3.94 mg O₂로 큰 개체에 비해 산소소비율이 높았다(Fig. 3). 수온 23℃에서 큰 개체의 경우, TBTCI의 경우 0.3 ppm에서 5.15 mg O₂였으며, 1.5 ppm에서 2.15 mg O₂를 나타내었다. 그리고 작은 개체의 경우는 0.3 ppm에서 19.13 mg O₂, 1.5 ppm에서 8.84 mg O₂로 큰 개체에 비해 산소소비율이 높았으며, 수온 15℃와 23℃에서 모두 TBTCI 농도가 증가함에 따라 산소소비율의 감소는 크게 나타났다(Fig. 4).

Hg와 포함된 총알고등어의 LC₅₀의 산소소비율은 수온 15℃과 큰 개체 및 작은 개체의 경우 5 ppm에서 각각 2.24 mg O₂, 4.02 mg O₂ 그리고 17 ppm에서는 각각 0.06 mg O₂와 0.49 mg O₂를 나타내며 Hg의 농도가 증가함수록 산소소비율은 크게 감소하였다(Fig. 3). 수온 23℃의 큰 개체 및 작은 개체에서는, Hg농도, 5 ppm에서 각각 4.21 mg O₂, 9.49mg O₂이었으며 17 ppm에서는 각각 0.74 mg O₂ 및 1.83 mg O₂를 나타내며 수온 15℃의 경우와 마찬가지로 Hg의

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Experimented conditions</th>
<th>LC₅₀</th>
<th>Large size (12 ± 0.5 mm)</th>
<th>Small size (5 ± 1 mm)</th>
<th>LC₅₀ ratio (Large/Small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBTCI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>15 (25)</td>
<td>32 ± 1</td>
<td>13 (8)</td>
<td>0.87 (0.68)</td>
<td>0.65 (0.15)</td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The values in the parenthesis is the values in 23℃
농도가 증가할수록 산소소비율은 크게 감소하였으며, 수온 상승에 따라 산소소비율은 증가하였다.

Cd에 노출된 경우, 수온 15°C-온 개체 및 같은 개체에서, 산소소비율은 3 ppm에서 각각 2.89 mg O₂, 12.58 mg O₂라고 15 ppm에서는 1.46 mg O₂와 7.99 mg O₂를 나타내었다 (Fig. 3). 수온 23°C의 경우는 3 ppm에서 각각 4.21 mg O₂, 18.34 mg O₂, 그리고 15 ppm에서는 각각 0.29 mg O₂와 3.15 mg O₂으로 Hg의 경우와 마찬가지로 Cd농도 증가에 따라 평균반응의 산소소비율은 크게 감소하였으며, 수온상승과 개체크기차가 작음수록 산소소비율은 높게 나타났다 (Fig. 3, 4).

고 칠


Fig. 3. Changes of oxygen consumption rates of Littorina brevicula after 9 days exposure to TBTCl, Hg and Cd at 15°C.

Fig. 4. Changes of oxygen consumption rates of Littorina brevicula after 5 days exposure to TBTCl, Hg and Cd at 23°C.
I. 총알고등에 미치는 유기주석 및 중금속의 급성독성

TBTC의 영향은 Homarus americanus의 유생 (Laughlin and French, 1980), 큰개미유인 Acanthomysis sculptha (Davidson et al., 1986) 및 아메바류 Mytilus edulis (Salazar and Salazar, 1987, 1988) 등에서 관찰된다. TBTC의 0.1 μg/g 이상으로 15일간 사육하는 동안 Mytilus edulis의 veiger 유생은 50% 사망하였으며 (Beaumont and Budd, 1984), Crassostrea gigas 유생은 100 μg/g DLT에서 49일간 사육시켜도 동일한 50% 사망을 보였다 (Thain et al., 1987). 또한 copepod, Acartia tonsa 및 harpacticoid Notocora spinipes의 96h-LC50은 1 μg/g 2 μg/g TBTC (Linden, 1979; Uren, 1983)으로 해양생물에 미치는 TBTC의 LC50은 저농도로 관찰되며, 특히 유생의 생존과 자원으로의 가공에 미치는 TBTC의 독성영향은 매우 심각한 것으로 보인다. TBTC1에 폐로미성 총알고등의 반수치농도는 23°C의 경우 큰 개개와 작은 개개에서 각각 8days-LC50이 680 μg/g, 8days-LC50이 150 μg/g이었으며, 15°C에서는 각각 13days-LC50이 870 μg/g, 13days-LC50이 650 μg/g로서 희에 보고된 다른 종들에 비해 다소 높은 LC50을 나타내었다. 이는 본 실험에 이용한 개개의 크기가 대상의 크기에 가깝기 때문이었으며, 환경변화 가 다양한 조건에서 생명의 성 간직하는 것으로 여겨진다.


Argopecten irradians 처리의 경우 수온 20°C에서 CdCl2에 대한 96hr-LC50은 1.48 ppm, HgCl2의 24hr-LC50은 0.37 ppm으로 보고 있으며 (Nelson et al., 1977), Crassostrea virginica의 경우는 26°C, embryo stage에서 HgCl2 48hr-LC50이 5.6 ppb, CdCl2는 3.8 ppm을 보고하였다 (Calabrese et al., 1973). 그리고 성체의 경우는 Monodonta antilles (M. 48hr-LC50는 6 ppm이었으며, CdSO4에 대한 48hr-LC50는 8 ppm으로 저해하여 더욱 크게 영향을 받는 것으로 보고하고 (Calabrese et al., 1977) 있는데, 이는 총알고등의 Hg와 Cd의 반수치농도가 다소 차이를 보이고 있으며, 저해의 영향은 유사한 결과를 보여 오염에 따른 생명의 다양 한 반응을 보여준다고 한다.

따라서 모든 결과를 종합하여 볼 때 조건에 상관없이 총알고등은 생물학의 상관없이 저해는 용이하나, 오염원에 대한 내성이 강하고 환경적응력이 뛰어난 종으로 여기지 못하는데 생명체에 이용할 수 있는 종으로는 다소 무리가 있을 것으로 생각된다.

요 약

우리나라 전 연안의 조간대에 분포하고 있는 총알고등을 대상으로 TBTC, Hg 및 Cd의 급성독성과 그에 따른 사망률 및 산소소비율의 변화를 수온, 15°C와 23°C 그리고 개개크기에 따라 살펴 보았다.

수온 15°C에서 큰 개개 및 작은 개개에 대한 오염원별 급성독성 영향은 TBTC에서 13일-LC50은 각각 0.87 ppm, 0.65 ppm, Hg의 11 일-LC50은 각각 5.55 ppm, 2.85 ppm, 그리고 Cd의 9일-LC50은 각각 13.77 ppm 및 8.46 ppm으로 독성순위는 TBTC > Cd > Hg으로 나타났다. 그리고 수온 23°C에서는, TBTC의 8일-LC50은 각각 0.68 ppm과 0.15 ppm, Hg의 5일-LC50은 각각 10.41 ppm과 5.73 ppm이었으며, Cd의 4일-LC50은 각각 13.31 ppm과 4.47 ppm이었으며, 독성순위는 TBTC > Cd > Hg로 나타났다. 실험 오염원에 대해서 큰 개개가 작은 개개보다 대상이 컸으며, Hg와 Cd의 경우 15°C 에서보다 23°C에서 오염원의 농도가 증가함에 따라 산소의 대상이 더 크게 감소했다. TBTC와 Cd에서는 15°C에 비해 23°C에서 개개가 적을 수록 저해영향이 크게 작용했다. 총알고등의 산소소비율은 15°C보다 23°C에서 큰 개개보다 작은 개개에서 더 높았으며, 작은 개개가 농도증가에 따라 더 크게 감소했다.

참 고 문 헌

Linden, E., B.E. Bengtsson, O. Svanberg and G. Sundstrom. 1979. The acute toxicity of 78 chemicals and pesticide formulation against two brackish water organisms; the bleak (Alburnus alburnus), and the harpacticoid Nitocra spinipes. Chemosphere, 8, 843–851.
Rui, X. and G.A. Lioentze. 1991. Seasonal variation of DDT and PCB accumulation in muscle of carp (Cyprinus carpio) and eel (Anguilla anguilla) from the Ebro Delta, Spain. Vie-Milieu, 41, 133–140.