The Antimicrobial Effect of Water Soluble Chitosan

수용성 키토산의 항균효과

  • Jung, Byung-Ok (Department of Industrial Chemistry, Hanyang University) ;
  • Lee, Young-Moo (Department of Industrial Chemistry, Hanyang University) ;
  • Kim, Jae-Jin (Biomaterial Research Center, Division of Polymer Science, KIST) ;
  • Choi, Young-Ju (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Jung, Kyung-Ja (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Kim, Je-Jung (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Chung, Suk-Jin (Department of Food Science and Technology, Seoul National University of Technology)
  • 정병옥 (한양대학교 공업화학과) ;
  • 이영무 (한양대학교 공업화학과) ;
  • 김재진 (한국과학기술연구원 고분자부 생체재료연구센타) ;
  • 최영주 (서울산업대학교 식품공학과) ;
  • 정경자 (서울산업대학교 식품공학과) ;
  • 김제중 (서울산업대학교 식품공학과) ;
  • 정석진 (서울산업대학교 식품공학과)
  • Received : 1998.10.01
  • Accepted : 1999.06.14
  • Published : 1999.08.10

Abstract

Structure of water soluble chitosan (WSC) was confirmed by Fourier transform infrared spectrometer (FT-IR), X-ray diffractometer and thermal analyser. The viscosity average molecular weight of WSC ranged from $3.0{\times}10^{4}$ to $4.5{\times}10^{4}$. Using the WSC having viscosity average molecular weight of $3.0{\times}10^{4}$, the antimicrobacterial effects against microorganism and oral microorganism showed 81.7% and 80.6% for Staphyloccus aureus and Bacillus subtilis, respectively, while the anitmicrobacterial effect exhibited 100% and 73.8% against Streptococcus mutans and Streptococcus sanguis, respectively. Therefore it is concluded that WSC is more effective against oral microorganism that microorganism in terms of antimicrobacterial effects. WSC sample with the viscosity average molecular weight of $4.5{\times}10^{4}$ exhibited a half of the antimicrobacterial effect of the low MW sample, indicating that the WSC with low MW was better than that with high MW. Chitin and chitosan showed a drastic decrease of acidity from pH 7.0 to 4.9 after 8 minute incubation time and reached an equilibrium after that. WSC, however, restrained pH of the sample from lowering up to about 16 minutes of incubation and reached an equilibrium after that. WSC obviously showed a buffering effect against pH change.

수용성 키토산을 제조하여 적외선 분광광도계를 이용, 구조확인을 하였으며, X-선 회절분석기로 결정성을, 열분석기로 열안정을 확인을 하였으며, 고유점도법에 의한 점도평균분자량을 측정한 결과 $3.0{\times}10^{4}$$4.5{\times}10^{4}$이었다. 점도평균분자량이 $3.0{\times}10^{4}$인 수용성 키토산의 첨가량 따른 일반미생물과 구강미생물에 대한 shaker flask method로 항균효과를 측정한 결과 0.2%의 첨가량에서 Staphylococcus aureus와 Bacillus subtilis는 81.7%와 80.6%의 항균효과를 Escherichia coli는 42.4%의 저해율로 제일 낮은 항균효과를 나타냈으며, 구강미생물인 Streptococcus mutans와 Streptococcus sanguis는 100%의 항균효과를 Streptococcus mitis는 73.8%의 항균효과를 나타냄으로서 일반미생물 보다 구강미생물이 더 우수한 항균력을 나타내었다. 점도평균분자량이 $4.5{\times}10^{4}$인 수용성 키토산은 점도평균분자량이 $3.0{\times}10^{4}$인 수용성 키토산의 1/2 정도의 항균효과를 나타내므로서 점도평균분자량이 작은 수용성 키토산의 항균효과가 월등히 좋았다. 구강미생물의 산도저하 억제효과는 대조군의 경우 배양 후 8분 이내에 pH 7.0에서 4.9로 급격한 pH의 저하를 보인 반면 그 이상에서는 평형을 유지하였으며, 수용성 키토산은 16분 정도까지는 대조군에 비해 현격히 원만한 산도저하 억제효과를 나타내다가 그 이상에서는 평형을 유지하는 것으로 보아 pH 변화에 대한 완충효과가 있음을 알 수 있었다.

Keywords

References

  1. Chitin R. A. A Muzzarelli
  2. J. Biomed. Mat. Res. v.19 S. Hirano;Y. Noisiki
  3. J. Appl. Polym. Sci. v.24 K. Kojima;M. Yoshikuni;T. Suzuki
  4. J. Korean Ind. Eng. Chem. v.7 C. H. Kim;B. O. Jung;K. S. Choi;J. J. Kim
  5. J. Korean Ind. Eng. Chem. v.9 B. O. Jung;T. S. Chung
  6. Food Product Development v.11 M. A. Bough
  7. Exp. Mycol. v.3 C. R. Allan;L. A. Hadwiger
  8. Exp. Mycol. v.8 D. F. Kendra;L. A. Hadwiger
  9. Food Chemical v.2 Y. Uchida
  10. Polym. Adv. Technol. v.8 C. H. Kim;S. Y. Kim;K. S. Choi
  11. Polym. Bull. v.38 C. H. Kim;J. W. Choi;H. J. Chun;K. S. Choi
  12. J. Food Protection v.57 S. W. Fang;C. F. LI;D. Y. C. Shin
  13. Microbial Cell Wall Synthesis and Autolysis M. G. Shepherd(et al.);C. Nombela(ed)
  14. Bull. Tokyo dent., Coll. v.35 K. I. Shibasaki;H. Sano;T. Matsukubo;Y. Takaesu
  15. Bull. Tokyo dent., Coll. v.35 K. I. Shibasaki;H. Sano;T. Matsukubo;Y. Takaesu
  16. J. Appl. Polym. Sci. v.28 S. Mima;M. Miya;R. Iwamoto;S. Yoshikawa
  17. US Patent 5,730,876 S. B. Seo(et al.)
  18. J. Korean Ind. Eng. Chem. v.5 S. K. Cho;S. J. Kim;B. O. Jung;J. J. Kim;K. S. Choi;Y. M. Lee
  19. Polymer Structure, Properties and Application R. D. Deanin
  20. Appl. Environ. Microbial. v.46 G. C. Chen;B. R. Johnson
  21. 高分子と醫療 竹本喜一;砂本順川;明石滿
  22. Microbiology Principles & Applications T. J. Franklin;G. A. Black;V. E. Davision
  23. Chitin, Chitosan Report Growth inhibition of chitosan from suid pen against oral Streptococci K. Sito;M. Shimojoh;K. Fukushima
  24. Bull. Tokyo Dent. Coll. v.32 H. Sano;T. Matsukubo;K. Shibasaki;H. Itoi;Y. Tadaesu
  25. Bull. Tokyo Dent. Coll. v.35 K. Shibasaki;H. Sano;T. Matsukubo;Y. Takaesu
  26. Archs. Oral Biol. v.28 A. Tatevossian;E. Newbrun