A Study on the Preparation of Nylon6,6/Polypyrrole Conducting Composite

Nylon6,6/Polypyrrole 전도성 복합체의 제조에 관한 연구

  • Lee, Wan-Jin (Faculty of Applied Chemistry, College of Engineering, Chonnam National University) ;
  • Kim, Hyo-Yong (Faculty of Applied Chemistry, College of Engineering, Chonnam National University)
  • 이완진 (전남대학교 공과대학 응용화학공학부) ;
  • 김효용 (전남대학교 공과대학 응용화학공학부)
  • Received : 1998.09.30
  • Accepted : 1998.12.22
  • Published : 1999.04.10

Abstract

The conducting composites were prepared by blending polypyrrole (PPy) as a conducting polymer and nylon6,6 as a matrix. In chemical polymerization of PPy, the oxidizing agent was $FeCl_3$ and dopant was alkylbenzenesulfonic acid, such as camphorsulfonic acid (CSA) or dodecylbenzene sulfonic acid (DBSA). The electrical conductivity and mechanical properties were measured for the amount of dopant and PPy complex, and these morphology observed. When it was doped with DBSA having long alkyl chain and added the PPy complex of 25 wt %, the electrical conductivity was increased up to 0.64 S/cm.

Nylon6,6를 matrix로 사용하여 전도성 고분자인 polypyrrole (PPy)과의 전도성 복합체를 블렌딩 방법에 의하여 제조하였다. PPy를 화학적으로 중합시키는데 있어서 $FeCl_3$를 산화제로 사용하였으며, dopant로서 camphorsulfonic acid (CSA)와 dodecylbenzenesulfonic acid (DBSA)와 같은 알킬 벤젠 술폰산을 사용하였다. 제조된 전도성 복합체에 대하여 dopant의 종류에 따라 또는 PPy의 함량에 따라 전기전도도 및 몰포로지 그리고 기계적 물성 등을 측정 분석하였다. PPy 착체의 함량이 증가할수록 전기전도도는 증가하였으며, 알킬사슬의 길이가 긴 DBSA로 도핑된 25 wt % PPy 착체와 nylon6,6 복합체의 전기전도도는 0.64 S/cm까지 향상되었다.

Keywords

Acknowledgement

Supported by : 한구과학재단

References

  1. J. Chem. Soc. Chem. Comm. H. Shirakawa;E. J. Louis;a. G. McDiarmid;C. K. Chiang;A. J. Heeger
  2. Synth Met. v.1 L. W. Shachlette;R. R. Chance;D. M. Ivory;G. G. Miller;R. H. Baughman
  3. J. Chem. Soc. Chem. Comm. A. F. Diaz;K. Kanazawa;G. D. Gadini
  4. J. Chem. Soc. Chem. Comm. J. F. Rabolt;T. C. Clarke;K. K. Kanazawa
  5. J. Chem. Soc. Chem. Comm. H. W. Gibson;F. C. Bailey;A. J. Epstein;H. Romelmann;J. M. Bochan
  6. Polymer. Comm. v.23 M. E. Galvin;G. E. Wnek
  7. Synth. Met. v.48 Y. Cao;P. Smith;A. J. Heeger
  8. Synth. Met. v.74 J. Y. Lee;D. Y. Kim;C. Y. Kim
  9. Appl. Phys. Lett. v.60 Y. Cao;G. M. Treacy;P. Smith;A. J. Heeger
  10. Synth. Met. v.52 Y. Cao;A. J. Heeger
  11. Phys. Rev. B v.48 K. Lee;A. J. Heeger;Y. Cao
  12. Materials Science and Engineering, (3rd ed.) W. D. Callister
  13. Synth. Met. v.65 A. G. MacDiarmid;A. J. Epstein
  14. Synth. Met. v.69 A. G. MacDiarmid;A. J. Epstein
  15. Synth. Met. v.72 J. K. Avlyanov;Y. Min;A. G. MacDiarmid;A. J. Epstein
  16. Materials Research Society v.11 A. Lekatou;S. E. Faidi;S. B. Lyon;R. C. Newman