Kinetics of Catalytic Oxidation of Vinyl Chloride over CrOx/γ-alumina

CrOx/γ-alumina 촉매상에서 Vinyl Chloride의 산화반응 속도해석

  • Received : 1998.07.24
  • Accepted : 1998.10.07
  • Published : 1999.02.10

Abstract

The complete catalytic oxidation of vinyl chloride was investigated over chromium oxide supported ${\gamma}$-alumina using a fixed bed micro-reactor at temperature between 240 and $300^{\circ}C$ and concentration between 600 and 3500 ppm. The oxidation of vinyl chloride was nonlinear in the concentration of vinyl chloride and zeroth order in the concentration of oxygen. The addition of HCl and $H_2O$ as products to the feed stream didn't influence the conversion of vinyl chloride. Several kinetic rate model were tested to describe the data over the range of condition investigated, and developed a model which provide the best correlation of experimental data. The resulting model of kinetic rate was derived by assuming that the reacting occurred via adsorption and subsequent decomposition of the vinyl chloride onto the oxygen covered chromium oxide surface, with the reaction being inhibited by the adsorption of vinyl chloride. The percent standard deviation between the predicted and experimental was about 5.2%, and the activation energy was 18.9 kcal/mol.

고정층 촉매 반응기를 이용하여 ${\gamma}$-알루미나에 담지한 크롬산화물 촉매상에서 vinyl chloride의 완전산화잔응을 $240{\sim}300^{\circ}C$의 온도와 600~3,500 ppm의 농도범위에서 조사하였다. 반응은 vinyl chloride의 농도에 대하여 비선형적으로 변하였으며, 산소의 농도에 대하여는 0차 거동을 보였다. 또한 반응 생성물인 $H_2O$와 HCl를 반응물에 첨가하였을 때 vinyl chloride의 전환율에 영향이 거의 없었다. Vinyl chloride의 산화반응에 대한 몇 가지 반응모델을 가정하고 실험결과와 상관시켜 가장 잘 일치하는 모델을 도출하였다. 속도식의 해석결과 vinyl chloride의 산화반응은 산소로 피복된 촉매표면에 vinyl chloride가 흡착한 후 산화분해되며, vinyl chloride가 촉매표면에 흡착하여 반응을 방해한다는 가정하에서 도출된 반응속도 모델이 실험결과를 가장 잘 표현하였다. 실험치와 예측치간의 표준편차 백분율은 약 5.2% 정도였으며 활성화에너지는 18.9 kcal/mol으로 계산되었다.

Keywords

References

  1. Chem. Eng. Prog. v.90 no.7 W. A. Shirley
  2. Hazardous air pollutants: assessment liabilities and regulatory compliance J. W. Bradstreet
  3. Chem. Eng. Prog. E. C. Moretti;N. Mukhopadhyay
  4. Chem. Eng. Prog. E. N. Ruddy;L. A. Carroll
  5. Chem. Eng. Prog. W. Chu;H. Windawi
  6. Ind. Eng. Chem. Res. v.26 J. J. Spivey
  7. J. Appl. Chem. Biotechnol. v.25 G. C. Bond;N. Sadeghi
  8. Combust. Sci. & Tech. v.63 K. Ramanathan;J. J. Spivey
  9. Ind. Eng. Chem. Res. v.28 S. Immamura;H. Tarumoto;S. Ishida
  10. Catalysis Today v.30 B. Chen;C. Bai;R. Cook
  11. Applied Catalysis B: Environmental v.13 P. S. Chintarwar;H. L. Greene
  12. Applied Catalysis A: General v.131 F. Solymosi;J. Rasko
  13. J. Am. Chem. Soc. v.115 S. C. Petrosius;R. S. Drago;V. Young;G. C. Grunewald
  14. Hazardous Waste v.1 no.1 M. P. Manning
  15. Combust Sci. and Tech. v.47 J. Weldon;S. M. Senkan
  16. Ind. Eng. Chem. Res. v.32 J. A. Rossin;M. M. Farris
  17. Ind. Eng. Chem. Res. v.33 D. M. Papenmeier;J. A. Rossine
  18. Applied Catalysis B: Environmental v.12 J. C. Lou;S. S. Lee
  19. Ind. Eng. Chem. Res. v.31 A. A. Klinghoffer;J. A. Rossin
  20. Applied Catalysis B: Environmental v.5 S. K. Agarwal;J. J. Spivey;D. E. Tevault
  21. J. Chem. Soc. Chem. Commun. S. K. Agarwal;J. J. Spivey;D. E. Tevault
  22. Elements of Chemical Reaction Engineering H. S. Fogler
  23. Chemical Reactor Analysis and Design G. F. Froment;K. B. Bischoff
  24. Heterogeneous catalysis in Practice C. N. Satterfield
  25. Fundamentals of Chemical Reaction Engineering C. D. Holland;R. G. Anthony
  26. Chem. Eng. Sci. no.SUP.3 P. Mars;D. W. van Krevelen
  27. Catal. Rev. Sci. Eng. v.15 S. Carra;P. Forzatti
  28. Advan. Chem. Eng. v.8 J. R. Kittrell
  29. Chem. Eng. Sci. v.47 A. A. Barresi;G. Baldi
  30. J. Catal. v.132 S. H. Oh;P. J. Mitchell
  31. J. Catal. v.2 W. R. Patterson;C. Kemball
  32. J. Catal. v.56 C. F. Cullis;B. M. Willatt
  33. Langmuir v.5 K. Otto