The Physicochemical and Optical Characteristics of FeaSibCcHd Films

FeaSibCcHd 박막의 물리·화학 및 광학적 특성

  • Kim, Kyung-soo (Deparment of Chemical Engineering, Dan-kook University) ;
  • Jean, Bup-Ju (Deparment of Chemical Engineering, Dan-kook University) ;
  • Jung, Il-Hyun (Deparment of Chemical Engineering, Dan-kook University)
  • Received : 1998.08.10
  • Accepted : 1998.11.02
  • Published : 1999.02.10

Abstract

When the preparation method of iron silicide films possess the annealing process, the interfacial state of the films is not fine. The good quality films were obtained as the plasma was used without annealing processing. Since the injected precursors were various active species in the plasma state, the organic compound was contained in the prepared films. We confirmed the formation of Fe-Si bonds as well as the organic compound by Fe and Si vibration mode in Raman scattering spectrum at $250cm^{-1}$ and Ft-IR. Because of epitaxy growth being progressed by the high energy of plasma at the low temperature of substrate, iron silicide was epitaxially grown to ${\beta}$-phase that had lattice structure such as [220]/[202] and [115]. Band gap of the prepared films had value of 1.182~1.174 eV and optical gap energy was shown value of 3.4~3.7 eV. The Urbach tail and the sub-band-gap absorptions were appeared by organic compound in films. We knew that the prepared films by plasma were obtained a good quality films because of being grown single crystal.

현재 iron silicide막을 제작하고 있는 방법은 열처리를 수행함으로써 막의 계면 상태가 좋지 않으나 플라즈마를 이용하였을 때는 열처리를 수행하지 않으므로 양질의 막을 얻을 수 있다. 본 실험에서 제작된 막은 Raman 스펙트럼 $250cm^{-1}$에서 나타난 Fe와 Si의 진동모드와 FT-IR에 의해 유기화합물 뿐만 아니라 Fe-Si의 결합이 형성되었음을 확인하였다. 또한 플라즈마의 높은 에너지에 의해 낮은 기판 온도에서 에피택시 성장이 진행되는 동안 iron silicide는 [220]/[202], [115] 등과 같은 격자구조를 갖는 ${\beta}$-상으로 성장하였다. 제조된 막의 band gap은 1.182~1.174 eV의 값을 가지고, 광학적 에너지갭을 3.4~3.7 eV의 값을 나타내었다. 막 내의 유기화합물에 의해 유발되는 Urbach tail과 sub-band-gap 흡수가 관측되었다. 따라서 플라즈마를 이용하여 제작된 막은 단일결정이 성장되어 양질의 박막을 얻을 수 있음을 확인하였다.

Keywords

References

  1. Physical Review B v.42 N. E. Christensen
  2. Appl. Phys. Lett. v.65 J. Y. Natoli;I. Berbezier;J. Derrier
  3. J. Appl. Phys. v.68 C. A. Dimitriallis;J. H. Werner;S. Logothetidis;M. Stutzmann;J. Weber
  4. Appl. Phys. Lett. v.59 D. J. Oostra;D. E. W. Vandenhoudt;C. W. T. Bulle-Lienwma;E. P. Naburgh
  5. Jpn. J. Appl. Phys. v.36 H. Katsumata;Y. Makita;N. Kobayashi;H. Shibata;M. Hasegawa;S. I. Uekusa
  6. J. Appl. Phys. v.79 Z. Yang;K. P. Homewood
  7. Physical Review B v.51 no.17 A. Rizzi;B. N. E. Rosen;D. Freundt;Ch. Dieker;H. Luth
  8. Jpn. J. Appl. Phys. v.23 F. Fujimoto;A. Ootuka;K. Komaki;Y. Iwata;I. Yamane;H. Yamasita;Y. Hasimoto;Y. Tawada;K. Nishimura;H. Okamoto;Y. Hamakawa
  9. Mater. Chem. and Phys. v.51 B. J. Jeon;I. H. Jung(et al.)
  10. Jpn. J. Appl. Phys. v.36 B. J. Jeon;I. H. Jung(et al.)
  11. Solid State Commun. v.80 K. Lefki;P. Muret;E. Bustarret;N. Boutarek;R. Madar;J. Chevrier;J. Derrien;M. Brunel
  12. J. Mat. Sci. Soc. Jpn. v.25 H. Kaibe;E. Ohta;M. Sakata;Y. Isoda;I. Nishida
  13. Jpn. J. Appl. Phys. v.30 H. Yoshihiro;N. Noboru;T. Shinya;N. Shoichi;K. Yasuo;K. Yusinori
  14. Thin Solid Films v.295 M. Ozvold;B. Gasparik;M. Dubnicka
  15. Phys. Rev. v.101 D. L. Dexter