Optical Characteristics of Iron Silicide Films Prepared by Plasma CVD

Plasma CVD에 의해 제조된 Iron Silicide 박막의 광학적 특성

  • Kim, Kyung-soo (Department of Chemical Engineering, Dan-kook University) ;
  • Yoon, Yong-soo (Department of Chemical Engineering, Dan-kook University) ;
  • Jung, Il-Hyun (Department of Chemical Engineering, Dan-kook University)
  • Received : 1998.06.16
  • Accepted : 1999.03.08
  • Published : 1999.05.10

Abstract

The iron silicide films were prepared by chemical vapor deposition method using rf-plasma in variations of substrate temperature. rf-power, and ratio of $SiH_4$ and Fe-precursor. While iron silicide films are generally grown by ion beam synthesis (IBS) method of multi-step process, it is confirmed that iron silicide or $\beta$-phase consolidated $Fe_aSi_bC_cH_d$ was formed by one-step process in this study. The characteristics of films is variable because the different amounts of carbon and hydrogen was involved in the films as a function of dilute ratio of Fe-precursors and silane. It was shown that the different characteristics of films in carbon and hydrogen following the ratio of Fe-precursor and silane. The optical gap energy of films fabricated according to substrate temperature was invariant because active site brought in desorption of hydrogen was limiled. When rf-power was above 240 watt, the optical gap energy turned out to have high values because of dangling bonds increased by etching.

저온 공정이 가능한 rf-plasma를 이용한 화학증착법으로 기판의 온도, 출력, $SiH_4$와 천음 함유한 유기화합불 진구체의 희석비 등을 변수로 각 실험 조건에 따라 iron silicide를 제조하였다. 일반적으로 iron silicide 막은 다단계 공정의 Ion Beam Synthesis (IBS)법으로 성장시키고 있으나, 플라즈마를 사용함으로써 단일공정에 의해 $Fe_aSi_bC_cH_d$로 결합된 iron silicide 및 ${\beta}$-상이 형성될 수 있음을 확인하였다. 철 전구체와 실란 (silane)의 희석비에 따라 막 내에 존재하는 탄소와 수소양의 차이로 인해 서로 다른 막의 특성을 나타내었다. 기관의 온도에 따른 광학에너지갭 ($E_b^{opt}$)은 박 표면에 존재하는 수소가 탈착되면서 제공할 수 있는 활성점이 한정되어 있기 때문에 큰 변화가 없었다. 240 watt 이하의 출력에서는 광학에너지갭이 감소하였고, 240 watt 이상의 높은 출력에서는 식각에 의해 미결합수가 증가하여 광학에너지갭은 높게 나타났다.

Keywords

References

  1. Physical Review B v.42 N. E. Christensen
  2. Appl. Phys. Lett. v.65 J. Y. Natoli;I. Berbezier;J. Derrier
  3. Jpn. J. Appl. Phys v.36 H. Katsumata;Y. Makita;N. Kobayashi;H. Shibata;M. Hasegawa;S. I. Uekusa
  4. J. Appl. Phys v.68 C. A. Dimitriallis;J. H. Werner;S. Logothetidis;M. Stutzmann;J. Weber
  5. J. Appl. Phys. v.74 D. J. Oostra;C. W. T. Bulle-Lienwma;D. E. W. Vandenhoudt;F. Felten;J. C. Jans
  6. Appl. Phys. Lett. v.59 D. J. Oostra;D. E. W. Vandenhoudt;C. W. T. Bulle-Lienwma;E. P. Naburgh
  7. J. Appl. Phys. v.80 H. Katsumata;Y. Nakita;N. Kobayashi;H. Shibata;M. Hasegawa;I. Aksenov;I;S. Kimura;A. Obara
  8. Thin Solid Films v.295 M. Ozvold;B. Gasparik;M. Dubnicka
  9. J. Appl. Phys. v.69 K. Lefki;P. Muret;N. Cherief;R. C. Cinti
  10. J. Appl. Phys. v.79 Z. Yang;K. P. Homewood
  11. Jpn. J. Appl. Phys. v.30 H. Yoshihiro;N. Noboru;T. Shinya;N. Shoichi;K. Yasuo;K. Yusinori
  12. Physical Review B v.51 A. Rizzi;B. N. E. Rosen;D. Freundt;Ch. Dieker;H. Luth
  13. CVD핸드북 이시우;이전