A Density Dependent Study on YHB RDF of Gaseous CO Molecule

밀도변화에 따른 CO기체 분자으I YHB 동경분포함수에 대한 연구

  • Yoon, Jong Ho (Department of Industry Chemical, College of Engineering, Kyungil University) ;
  • Kim, Hae Won (Department of Industry Chemical, College of Engineering, Kyungil University)
  • 윤종호 (경일대학교 공과대학 공업화학과) ;
  • 김해원 (경일대학교 공과대학 공업화학과)
  • Received : 1999.02.03
  • Accepted : 1999.03.31
  • Published : 1999.05.10

Abstract

The YHB radial distribution functions of a linear gas molecule CO were calculated by a computer within the Stockmayer molecular potential molel, which assumed thc CO molecule as a simple dipolar molecule. To examine the validity of the obtained YHB radial distribution of CO gas molecule, the density dependent pressures of CO at several temperatures were also calculated. The calculated pressures showed a good agreement with literially known experimental CO pressure data. The temperatures examined were 273, 298, and 373 K and the densities were up to $0.013/{\AA}^3$ (maximum pressure = 1000 atm). Since the calculated pressures showed a good agreement with the experimental values, the obtained YHB radial distribution functions of CO molecule seemed good enough to obtain and predict various equilibrium physical and chemical quantities of CO molecule sensitive to density such as pressure. It was also found that in CO gas system the dipole-dipole interaction is effective up to approximately 2.5 molecular diameter.

Stockmayer 분자 모델을 도입하여 선형분자인 CO분자를 쌍극자 분자로 단순화하여 CO 기체의 YHB 동경분포함수 (radial distribution function)를 컴퓨터로 계산하였다. 얻어진 CO 분자의 YHB 동경분포함수의 신뢰도는 여러 온도에서의 밀도 변화에 따른 CO 기체의 압력을 계산하여 조사하였다. 계산된 압력들은 문헌에 알려진 CO기체의 압력과 잘 일치하였으며 계산에 사용된 온도는 273, 298, 373 K, 그리고 조사한 밀도의 범위는 최대 약 $0.013/{\AA}^3$ (최대 압력 = 1000 atm)까지이다. 계산된 압력들이 문헌에 나타난 실험치와 잘 일치하는 것으로 나타났으므로 구해진 YHB 동정분포함수는 CO 분자의 압력과 같은 밀도변화에 민감한 각종 물리 화학적 평형 양들을 신뢰성있게 계산 및 예측할 수 있을 것으로 기대된다. 또한 이 연구에서 CO 기체의 dipole-dipole 상호작용은 약 2.5 분자직경까지 효과적으로 작용하는 것으로 나타났다.

Keywords

References

  1. Kirk-Ohmer Encyclopedia of Chemical Techonology M. Grayson
  2. Molecular Theory of Gases and Lipuids J. O. Hirschfelder;C. F. Curtiss;B. B. Bird
  3. Chem. Phys. v.64 J. F. Kanicky;C. J. Pings
  4. Progress in Liquid Physics R. A. Howe;C. J. Croxton(ed.)
  5. Statistical Mechanics D. A. McQuarrie
  6. J. Chem. Phys. v.47 J. A. Barker;D. Henderson
  7. J. Chem. Phys. v.91 J. H. Yoon;A. Hacura;F. G. Baglin
  8. J. of Ind. & Eng. Chemistry. v.9 J. H. Yoon;H. W. Kim
  9. J. Phys. Chem. v.97 J. H. Yoon
  10. J. Phys. Chem. v.98 J. H. Yoon;M. W. Huh
  11. Science v.263 R. Pool
  12. Mol. Phys. v.27 G. Stell;J. C. Rasaiah;H. Narang
  13. J. Chem. Phys. v.42 G. J. Troop;R. J. Bearman
  14. Phys. Rev. v.A5 V. Verlet
  15. 2 Band, 1 Teil, 6 Auflage Landolt-Bornstein