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Many reports suggest that neurotensin (NT) in the gastrointestinal tract may play a possible role as a

neurotransmitter, a circulating hormone, or a modulator of motor activity. NT exerts various actions in
the intestine; it produces contractile and relaxant responses in intestinal smooth muscle. This study was
designed to investigate the effect of NT on motility of antral circular muscle strips in guinea-pig stomach.
To assess the role of Ca’" influx in underlying mechanism, slow waves were simultaneously recorded
with spontaneous contractions using conventional intracellular microelectrode technique. At the
concentration of 10”7 M, where NT showed maximum response, N'T enhanced the magnitude (863 +198%,
mean=® SEM, n=13) and the frequency (154110.3%, n=11) of spontaneous contractions. NT evoked a
slight hyperpolarization of membrane potential, tall and steep slow waves with abortive spikes (278 +50%,
n=4). These effects were not affected by atropine (2 M), guanethidine (2 M) and tetrodotoxin (0.2 xM).
NT-induced contractile responses wete abolished in Ca*" -free solution and reduced greatly to near abolition
by 10 M of verapamil or 0.2 mM of CdCl,. Verapamil attenuated the effects of NT on frequency and
amplitude of the slow waves. Taken together, these results indicate that NT enhances contractility in
guinea-pig gastric antral circular muscle and Ca®”" influx through the voltage-operated Ca’" channel appears

to play an important role in the NT-induced contractile mechanism.
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INTRODUCTION

Neurotensin (NT), a linear tridecapeptide which was
isolated from bovine hypothalamus (Carryway &
Leeman, 1973), has been shown to exert a variety of
biological effects in the periphery and in the central
nervous system. In addition to brain, NT has also
been found in nerve tissue of gastrointestinal tract in
rats, guinea-pigs and dogs. In fact, most NT (over
85%) has been found to be distributed in gastro-
intestinal tract, especially in distal ileum (Orchi et al,
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1976; Sundler et al, 1977), where it is stored in a
population of specific endocrine-type cells of mucosal
layer called the N-cells (Doyle et al, 1985). All these
facts strongly suggest a possible role of NT in
gastrointestinal tract as a neurotransmitter or neuro-
modulator involved in the regulation of intestinal
motility and secretion (Schultzberg et al, 1980;
Buchan & Barber, 1987; Allescher et al, 1991).
There is a regional and species difference in the
mode of action of NT to contract and relax the
smooth muscle of gastrointestinal tract; NT reduces
the pressure of lower esophageal sphincter (Rosell et
al, 1980), inhibits gastric motility (Hellstrom et al,
1982; Keinke et al, 1986), blocks migrating motor
activity (Al-Saffar & Rosell, 1981), and enhances
motility of large intestine (Thor & Rosell, 1986). In
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guinea-pig ileuam, NT potentiated contractions of
longitudinal muscles, whereas it attenuated those of
circular muscles (Yamanaka et al, 1987). Ohashi et
al (1994) found that NT exerts a direct action to
contract longitudinal and circular smooth muscles of
guinea-pig small intestine, in addition to its well-
documented indirect action brought about by the
release of acetylcholine from cholinergic nerves
(Kitabgi & Freychet, 1978, 1979; Kitabgi, 1982), and
enhances the voltage-dependent inward Ca®* current
in ileal smooth muscle cells of the guinea-pig (Ohashi
et al, 1994). NT also exerted an apamin-sensitive
inhibitory action to relax longitudinal and circular
smooth muscles or inhibited muscarinic receptor-
mediated contraction in circular smooth muscle of the
guinea-pig intestine (Ohashi et al, 1994).

There have been a few experiments about the
effects of NT on gastric muscle of guinea-pig. The
longitudinal muscle strips showed biphasic response,
an initial trasient relaxation followed by lasting tonic
contraction (Katsoulis & Conlon, 1988). On the
contrary, Mandrek & Milenov (1991) showed differ-
ent response of longitudinal muscle strip which did
not respond to NT, in contrast to circular muscle strip
showing strong tonic contraction. Single cells isolated
from circular muscle showed relaxation to NT
(Chijiiwa et al, 1993).

All these results demonstrate diverse nature of
gastrointestinal smooth muscle in the response to NT,
showing further investigations are still needed.
Therefore, this experiment was designed to.charac-
terize the profile of contractile response to NT in
antral circular muscle strips of guinea-pig stomach
and to assess the role of Ca’" influx in the mecha-
nism.

METHODS

Guinea-pigs of either sex weighing 300~350 g
were exsanguinated after stunning. The stomach was
isolated and cut in the longitudinal direction along the
lesser curvature in phosphate-buffered Tyrode solu-
tion, The antral part of stomach was cut and the
mucosal layer was separated from the muscle layers.

Measurement of isometric contractions and intra-
cellular recording of the electrical activity

Muscle strips (2~3 mm wide, 10~12 mm long)

from the proximal part of antrum were cut parallel
to the circular fibers, and mounted in a 100 ml
vertical chamber. One end was fixed and the other
was connected to a force transducer (Isometric
Transducer, Harvard Bioscience, USA) to measure
isometric contractions. Another strip was mounted in
a 2 ml horizontal chamber. The strip was pinned out
at one end with tiny pins and the other end was
connected to a force transducer to record the iso-
metric contractions. The strip was constantly perfused
at a rate of 2~3 ml/min with COy/bicarbonate-
buffered Tyrode solution. Electrical activities were
recorded using conventional intracellular microelectrode
recording technique in which glass microelectrodes
were filled with 3 M KCl and only the ones with tip
resistance of 40 ~80 M.Q2 were used. Mechanical and
electrical responses of smooth muscle cells were
simultaneously recorded by a chart recorder (MX-6,
Device Ltd, Britain).

Solutions and drugs

Phosphate-buffered Tyrode solution contained (in
mM) NaCl 147, KCl 4, MgCl; - 6H,0 1.05, CaCl; -
2H20 2, NaH2PO4 ° 2H20 0.42, NazHPO4 . 12H20
1.81, glucose 5.5, and pH was adjusted to 7.35. COy/
bicarbonate buffered-Tyrode solution contained (in
mM) NaCl 135, KCl 5.4, MgSO, - 7TH,0 1, CaCl; -
2H,0 1.8, NaHCOs 15.3, NaH;PO, - 2H;0 1, glucose
5.6, and pH was adjusted to 7.35 and bubbled with
5% C0O2~95% O,. All drugs used in this experiments
were purchased from Sigma Chemicals (St. Louis,
MO, USA). ’

Statistics

All values are expressed as means+SEM. Stati-
stical analysis was performed using the Student’s #
test. Differences were considered to be significant
when P value was less than 0.05.

RESULTS

Effects of neurotensin on the spontaneous contr-
actions

Smooth muscle cells of guinea-pig stomach
generally generate spontaneous contractions without
external stimuli as shown in Fig. 1. These con-
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Fig. 1. Effect of neurotensin on the spontaneous con-
tractions of antral circular muscle in guinea-pig stomach.
Neurotensin (NT) was applied to the bath solution from
low concentration (10”'> M) as shown in the figure. NT
increased the amplitude of spontaneous contractions in a
dose-dependent manner and transiently increased the
basal tone at high concentration range (>10~° M). The
frequency of spontaneous contractions was also markedly
increased. Maximal potentiating effect of NT appeared
around 10~ M.

tractions were potentiated by the application of
neurotensin (NT) at the concentration of 10™"' M and
higher. At the concentration range of 10" M to 10™°
M, the magnitudes of both spontaneous phasic
contractions -and tonic contraction were increased
(Fig. 1A, B, C). At the concentration range above 107%
M, however, the response was biphasic, showing an
initial development of tonic contraction followed by
late reappearance of spontaneous contractions which
were bigger than control magnitude and attenuation
of tonic contraction (Fig. 1D, E).

atropine 2 uM
guanethidine 2 uM
tetrodotoxin 0.2 uM

neurotensin 0.1 pM

Fig. 2. Neurotensin (NT) enhanced the spontaneous
contractions even in the presence of autonomic nerve
blockers. A: NT (0.1 #M) increased the amplitude of
spontaneous phasic contractions. However, tonic contra-
ction was induced transiently and was not maintained
throughout. B: These effects were not affected by
autonomic nerve blockers (atropine 2 M, guanethidine
2 pM, and tetrodotoxin 0.2 ¢M).

At the concentration of 1077 M, where NT pro-
duced maximum response, NT enhanced both
magnitude (863 +198%, n=13) and frequency (154 =
10.3%, n=11) of spontaneous contractions.

Effect of NT in the presence of autonomic nerve
blockers on gastric contractility

It is well known that gastrointestinal tract is pro-
fusely innervated with both intrinsic and extrinsic
nervous plexus. To rule out the influence of auto
nomic nervous system the muscle strips were treated
with typical autonomic nerve blockers of atropine,
guanethidine and tetrodotoxin (Fig. 2). Pretreatment
with these blockers did not make a significant
difference to the overall result (Fig. 2B). This finding
indicated that NT exerts a direct action to contract the
antral circular muscle strips of guinea-pig stomach.
To elucidate the underlying mechanism for neuro-
tensin-induced contractile responses the concentration
around 1077 M NT showing maximum contractile
responses was chosen in this experiment.

Role of extracelllular Cca’ " influx

Increase in either intracellular Ca’* concentration
or in calcium sensitivity of contractile apparatus is
essential for enhancing smooth muscle contraction.
The former could be achieved by either Ca’" release
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from intracellular stores such as sarcoplasmic
reticulum or Ca’" influx through jonic channels. To
assess the degree to which Ca’" influx pathways
contribute the NT effect of potentiating contractions,
calcium ions were removed from normal Tyrode
solution (Fig. 3A). Calcium removal prevented any
contractile acitivity of the muscle strip from the
excitatory effect of NT including activation of large
phasic contractions and tonic contraction. However,
carbachol (CCh) known as an agent releasing Ca"
from intracellular calcium stores evoked tonic
contraction even in the absence of external Ca’* (Fig.
3A). Treatment with cadmium chloride (CdCl,), an
inorganic Ca>* channel blocker, abolished spontan-

A)
5 min
600 mg
Ca-free PSS
neurotensin 0.1 uM
carbachol 0.4 pM
400 mg

Cdci, 02 mM

neurotensin 0.5 uM
carbachol 0.4 pM

() S
— [

verapamil 10 uM

neurotensin 0.1 uM

carbachol 0.4 uM

Fig. 3. Effects of external Ca’* on the contractile
responses induced by neurotensin (NT). A: External
calcium ions were eliminated by replacing normal Tyrode
solution with Ca’*-free normal Tyrode solution.
Spontaneous contractions were abolished and NT had no
effect at all in this condition. However, carbachol (CCh)
still produced prominent tonic contraction without phasic
contractions. B: Treatment with CdCl, also abolished
spontaneous contractions. NT had no effect and CCh
produced the similar contractile response as above. C:
With verapamil the basic results were the same. However,
NT could produce slight tonic contraction transiently and
CCh could produce small phasic contractions on large
tonic contraction.

eous contractions, leaving tiny contraction which was
suppressed by NT. In the presence of CdCl, and NT
CCh brought about a similar tonic contraction (Fig.
3B). Verapamil, an organic Ca*" channel blocker,
also suppressed all the contractions of the strip of
which tonic contraction was able to be activated -
transiently by NT. In this condition CCh produced
lasting tonic contraction (Fig. 3C). All the results
point to the fact that blocking Ca”" entry into the cell
has led to complete or nearly complete abolition of
contractile responses, but tonic contraction could still
be produced if Ca®" is released from intracellular
stores.

Role of verapamil-sensitive Cd’ " channels
Antral circular muscle of guinea-pig stomach always

(A)

1 min

\ | ~40 mV
- - --=- -60 mvV
control(NT) neurotensin 0.05 uM

1 min
-40 mvV
¢ d -._A____J\..]
S 80 mv
neurotensin 0.05 yM wash out(NT)
verapamil 10 pM
(B)
" neurotensin(A-b)
10 sec
-40 mV

/ 60 mV

neurotensin & verapamil{A-c)

Fig. 4. Effects of neurotensin (NT) on slow waves. A:
Slow waves were recorded continuously in the same
smooth muscle cell (a to d). Both the amplitude and the
frequency of slow waves were markedly increased by NT
and hyperpolarization of membrane potential was induced
with tall and steep slow waves (b). In this condition
verapamil attenuated these responses that were reversible
(c). B: The effect of NT (A-b) and that of added
verapamil (A-c) were compared in expanded time scale.
Verapamil resulted in reduction of slow waves frequency
and attenuated their amplitude no by reducing the
hyperpolarization of resting membrane potential but by
reducing the depolarization of peak potential.
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always exhibits regular fluctuations of membrane
potential called slow waves ranging from —60 mV
to —40 mV, constituting amplitude of around 20 mV.
The more depolarization slow waves reach, the larger
contractions are developed. Abortive spikes on the top
of slow waves which trigger even bigger contractions
are evoked when slow waves reach the depolarization
potential above a certain threshold value. The effects
of NT on slow waves are shown in Fig. 4. The
amplitude of slow waves was 20 mV and the
frequency was 3/min (Fig. 4A-a). NT increased the
amplitude of slow waves by slight hyperpolarization
of resting membrane potential and considerable
depolarization of peak plateau potential (278 +=50%,
n=4). The frequnecy was also increased to 6/min (Fig.
4A-b). Verapamil resulted in reduction of the fre-
quency of slow waves from 6/min to 4.8/min and
attenuated their amplitude not by reducing the
hyperpolarization of resting membrane potential but

(A) 1 min

i '|

ot AUMAMEIAMY 1 2

neurotensin 0.1 pM

(B)

1 min

2AAAAAALAAAALALAA s AN l

100 mg

~40 mV
o VWWWWWWMMWAY 7 72

verapamil 5 mM

neurotensin 0.1 pM

Fig. 5. Comparison of the effects of neurotensin (NT)
between control and verapamil- pretreated conditions on
the electrical and mechanical responses. The membrane
potential and mechanical contraction were simultaneously
recorded. A: NT increased enormously the amplitude of
both spontaneous contractions and slow waves and
induced prominent Ca’"-spikes. B: In the same muscle
strip the pretreatment with verapamil greatly attenuated
the effect of NT on the electrical and mechanical
activities. However, even in the presence of verapamil
NT potentiated phasic contractions coupled with changes
in slow waves; membrane depolarization and tall slow
waves without abortive spikes.

by reducing the depolarization of peak potential (Fig.
4A-c). The effects of verapamil on slow waves
showed again more clearly in Fig. 4B, where the slow
wave treated with NT and that treated with both NT
and verapamil were superimposed for comparison in
faster time scale. Removal of NT and verapamil from
the solution eventually reversed the frequency and
amplitude to control value, though Fig. 4A-d shows
rather reduction of them than control values because
of remaining verapamil that requires longer time to
wash out. Effect of verapamil can be seen more
clearly in Fig. 5, in which contractile and electrical
responses were recorded simultaneously. Initially
slow waves showed very small amplitude of 8~9
mV. However, upon administration of NT slow waves
became larger in amplitude and accompanied with
abortive spikes which transformed small amplitude of
contractions into much larger ones (Fig. 5A). This
effect of NT was conspicuously weakened by pre-
treatment with verapamil as evidenced by membrane
depolarization and tall, steep slow waves without ca™’-
spikes (Fig. 5B).

DISCUSSION

The present results show that the contractile
response of guinea-pig antral circular muscle strip to
NT is induced by increase in Ca’* influx through L-
type voltage-dependent Ca’" channels.

Studies with gastrointestinal smooth muscle of
different species suggest that NT has a variety of
effects on contractility: the direct inhibitory and
excitatory effects on smooth muscle as well as the
indirect excitatory effects via neural release of
neurotransmitters. The direct confractile activity of
NT depended on the increase in the intracellular Ca*"
concentration produced either by influx of extra-
cellular Ca®" through voltage-dependent channels
(Donoso et al, 1986; Snape et al, 1987; Christinck et
al, 1992; Mul¢ et al, 1992; Mul¢ & Serio, 1997), or
Ca’" influx through nonselective cation channels
(Komori et al, 1992), or release of Ca’" from internal
stores (Komori et al, 1992). The direct inhibitory
effects of NT were mediated by the opening of
apamin-sensitive Ca’"-dependent K" channels (Hui-
dobro-Toro, 1983; Allecher et al, 1992; Christinck et
al, 1992; Mulé et al, 1992; Ohashi et al, 1994) or by
the increase in intracellular cGMP level (Chijiiwa et
al, 1993). The indirect excitatory effects of NT were
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induced by the neuronal release of acetylcholine and
substance P (Mulé & Serio, 1997).

At the lower concentration range of NT (107"
M~10"% M), both the magnitude of spontaneous
phasic contraction and that of tonic contraction were
_increased. However, at the concentration range above

10™® M the response was biphasic, showing initial
transient disappearance of spontaneous phasic contra-
.ctions and development of tonic contraction followed
by late reappearance of much bigger spontaneous
contractions (Fig. 1). Even in the presence of auto-
nomic nerve blockers, atropine, guanethidine and
tetrodotoxin, such contractile responses to NT were
not affected (Fig. 2). This result indicated that the
contractile reponses result from direct action of NT
on gastric smooth muscle cells. Therefore, this
experiment was focussed on the source and the role
of Ca’* in the direct contractile effects evoked by NT
in gastric smooth muscle.

The observation that the excitatory mechanical
_action of NT is sensitive to both extracellular Ca®*
and drugs (verapamil, CdCl,) which block L-type
voltage-dependent Ca’* channels, while the contra-
ctile response to carbachol is not affected (Fig. 3),
suggest that activation of NT receptors may lead to
the opening of L-type voltage-dependent Ca’" cha-
nnels, whereas that of muscarinic receptors induces
tonic contraction via release of Ca’* from internal
Ca’” stores. Recently, Gully et al (1993) reported the
pharmacological profile of a nonpeptide NT anta-
gonist, SR 48692. Using this antagonist, the existence
of NT receptor subtypes has been suggested (Dubuc
et al, 1994; Labbg-Jullié et al, 1994; Mulé et al,
1996; Nguyen-Le et al, 1997; Croci et-al, 1999; Unno
et al, 1999). The cloning of rodent (Tanaka et al,
1990) and human NT-receptors from the HT 29 cell
line (Vita et al, 1993) resulted in sites with
high-affinity in vitro specific binding (NTy); a low-
affinity site (NT.) was also cloned from rat brain
(Chalon et al, 1996). Recently the human NT;
receptor was also cloned from a brain cortex cDNA
library and stably expressed in CHO cells (Vita et al,
1998). Since NT is a 13-amino acid peptide, its
excitatory action seems to be mediated not by
activation of intracellular receptor but by that of
membrane NT receptor.

NT evoked characteristic changes in slow waves
wihiich were recorded simultaneously with spontane-
ous contractions: membrane hyperpoarization and
frequent, tall, steep slow waves with abortive spikes

(Fig. 4, 5). These results suggest that NT may activate
a K* channels and L-type voltage-dependent Ca’"
channels. Our previous studies with guinea-pig antral
circular muscle strips and cells have shown that
guinea-pig gastric myocytes have L-type Ca™"
channels current which is closely linked with changes
in intracellular Ca>* concentration (Kim et al, 1997)
and the increased Ca’" current can induce tall, steep
slow waves with abortive spikes, and also have
apamin-sensitive, Ca’"- dependent K* channels
which are activated by norepinephrine to induce
membrane hyperpolarization (Lee et al, 1991). NT
produced complex species- and region-dependent
actions on gastrointestinal motor activity. In the
guinea-pig stomach, the presence of inhibitory
(Kastsoulis & Conlon, 1988) or excitatory (Mandrek
& Milenov, 1991) NT receptors on smooth muscle
cells has been suggested. The results of slow waves
changes recorded from this study using conventional
intracellular microelectrode technique suggested that
the direct excitatory effects of NT via Ca’" influx
throngh L-type channels prevails over the inhibitory
effects induced by activation of apamin-sensitive Ca’"-
dependent K channels.

In conclusion, present study provides evidence for
the coexistence of inhibitory effects with contractile
excitatory effects induced by NT in guinea-pig gastric
antral circular muscle. The influx of Ca’” through
L-type voltage-dependent channels induces the con-
tractile excitatory effects of NT.
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