Analysis for 16 Polynuclear Aromatic Hydrocarbons (PAH) in Sewage Sludge and Soil

하수슬러지와 토양 중 다핵방향족 탄화수소의 정량

  • Kim, Jong-Hun (Dept. of Environ., Eng. & Sci. Jeonju University)
  • 김종훈 (전주대학교 응용과학부 환경공학전공)
  • Received : 2000.01.19
  • Published : 2000.06.25

Abstract

The polycyclic aromatic hydrocarbon (PAH) content in sewage sludge and in farm soils were determined by gas chromatography linked to mass spectrometry (GC/MS) with use 2-ethylantracene as internal standards. Twelve PAH were identified in both sludges with naphthalene ($0.78{\mu}g/g$) being the most predominant in industrial sludge and pyrene ($0.26{\mu}g/g$) in municipal sludge. The total PAR content in industrial sludge and in municipal sludge were $1.74{\mu}g/g$ and $1.19{\mu}g/g$ respectively. PAH were contained in paddy soils and the concentration were very low in the range of $0.01-0.04{\mu}g/g$. The total PAH content in industrial and in municipal sludge were about 9.2 times and 6.3 times greater than in paddy soils ($0.19{\mu}g/g$).

하수슬러지와 토양시료 중 16가지의 다핵방향족 탄화수소(PAH)를 KOH와 $CHE_3OH$에 녹인 용액으로 Soxhlet 추출후 내부표준물질로 2-ethylantracene을 이용하여 GC/MS-SIM 방법으로 분석하였다. 12종의 PAH가 하수슬러지에서 검출되었고 공업지역 하수슬러지 중 가장 특징적인 화합물은 naphthalene($0.78{\mu}g/g$), 도시 하수슬러지에서는 pyrene($0.26{\mu}g/g$)이었으며, 총 PAH는 각각 $1.74{\mu}g/g$$1.19{\mu}g/g$이었다. 논 토양과 밭 토양에서의 PAH는 phenanthrene을 포함한 8종이 검출되었으며 그 농도범위는 $0.01-0.04{\mu}g/g$이었고, 총 PAH의 양은 각각 $0.19{\mu}g/g$$0.22{\mu}g/g$이었다. 논 토양 중의 총 PAH함량에 비하여 공업지역과 도시지역 하수슬러지 중의 총 PAH양은 각각 9.2배와 6.3배가 높게 나타났다.

Keywords

References

  1. Toxicol. Ind. Health. v.6 J. J. Freeman;R. H. Mckee;R. D. Phillips
  2. Environmental endocrine disruptors, A Hand book of property data L. H. Keith
  3. Environ. Sci. Technol. v.24 S. R. Wild;K. S. Waterhouse;S. P. McGrath;K. C. Jones
  4. The Science of the Total Environment v.101 S. R. Wild;J. P. Obbard;C. I. Munn;M. L. Berrow;K. C. Jones
  5. Land application of sludge A. L. Page;T. G. Logan;J. A. Ryan
  6. Environmental Pollution v.88 S. R. Wild;K. C. Jones
  7. Environmental Toxicology and Chemistry v.12 S. R. Wild;K. C. Jones
  8. J. Environ. Qual. v.12 N. T. Edwards
  9. Environmental Pollution v.76 S. R. Wild;M. L. Berrow;S. P. McGrath;K. C. Jones
  10. Water Manegement & Research v.12 S. R. Wild;K. C. Jones
  11. Nature v.370 no.7 S. L. Simonich;R. A. Hites
  12. Environ. Sci. Technol. v.30 S. K. Lotfabad;M. A. Pickard;M. R. Gray
  13. J. Environ. Qual. v.21 S. R. Wild;K. C. Jones
  14. Soil Sci. Soc. Am. J. v.46 G. Sposito;L. J. Lund;A. S. Chang
  15. J. Kor. Soc. Soil Sci. Fert. v.28 no.3 S. H. Yoo;J. Y. Lee;K. H. Kim
  16. Anal. Sci. & Tech.(Korea) v.12 no.4 H. Choi;T. Kim
  17. An improved HPLC method for polynuclear aromatic hydrocarbons. International Lambate D. W. Dong
  18. Canadian Journal of Biochemistry and Physiology v.37 E. G. Bligh;W. J. Dyer
  19. Anal. Chem. v.66 S. Reindl;F. Hofler
  20. Analyst. v.120 Y. Yang;W. Bauman
  21. Analyst v.212 J. R. Dean
  22. Anal. Chem. v.68 M. D. David;J. N. Seiber
  23. Intern. J. Environ. Anal. Chem. v.62 R. Hartmann
  24. Anal. Chem. v.66 V. L. Avila;R. Young;W. F. Beckert
  25. Analytica Chimica Acta. v.237 W. Auer;H. Malissa
  26. PgD/MSc, Instrumental Analytical Chemistry(Pt/t) Polynuclear aromatic hydrocatbons, Environmental sources and current methods of analysis G. Sim
  27. Anal. Sci. & Technol. (Korea) v.12 J. H. Kim
  28. Chemosphere v.28 A. Eschenbach;M. Kastner;R. Bierl;G. Schaefer;B. Mahro
  29. J. Chromatog. v.498 V. A. Gerasimenko;V. M. Navach
  30. Appl. Spectrosc. v.43 J. W. Childer;N. K. Wilson;R. K. Barbour