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The Alteration of Ca®"-activated K Channels in Coronary Arterial
Smooth Muscle Cells Isolated from Isoproterenol-induced Cardiac

Hypertrophy in Rabbit
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It has been proposed that Ca’-activated K* (Kc,) channels play an essential role in vascular tone. The
alterations of the properties of coronary Kc, channels have not been studied as a possible mechanism for
impaired coronary reserve in cardiac hypertrophy. The present studies were carried out to determine the
properties of coronary Kc, channels in normal and hypertrophied hearts. These channels were measured
from rabbit coronary smooth muscle cells using a patch clamp technique. The main findings of the present
study are as follows: (1) the unitary current amplitudes and the slope conductance of coronary Kc, channels
were decreased without changes of the channel kinetics in isoproterenol-induced cardiac hypertrophy; (2)
the sensitivity of coronary Kc. channels to the changes of intracellular concentration of Ca’" was reduced
in isoproterenol-induced cardiac hypertrophy. From above results, we suggest for the first time that the

alteration of Kca channels are involved in impaired coronary reserve in isoproterenol-induced cardiac
hypertrophy.
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INTRODUCTION

Cardiac hypertrophy is an initial adaptive response
to several types of cardiovascular stress (Packer,
1992) and a major risk for development of heart
failure and sudden cardiac death (Levy et al, 1990).
Pressure or volume overload on the myocardium
increases myocardial wall stress and hypertrophy may
be seen as an attempt to normalize wall stress and
oxygen demand (Kuhn, 1982; Chilian & Marcus, 1987).
Although initially protective, the increased myocardial
mass requires an increase in coronary blood flow to
maintain function; indeed, cardiac hypettrophy may
be associated with myocardial ischemia, even with
angiographically normal coronary arteries (Pichard et
al, 1981; Opherk et al, 1984). Reduced coronary
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reserve in response to physiological stress such as
pacing (Vrobel et al, 1980; Bache et al, 1981; Bache,
1988), exercise (Murray et al, 1981; Hittinger et al,
1990), or the coronary vasodilator adenosine (Hittinger
et al, 1989) is a recognized feature of cardiac
hypertrophy. The reduced coronary reserve limits the
ability of hypertrophied hearts to meet blood flow and
metabolic requirements when demand is increased.
Thus, despite normal myocardial oxygen consumption
and myocardial perfusion per unit mass at rest, the
hypertrophied heart is more vulnerable to ischemia
(Malik et al, 1973). Elucidating the mechanisms of
the impaired coronary reserve is therefore important
to reduce the mortality from cardiovascular causes.

Many studies have shown the alteration of coronary
circulation in cardiac hypertrophy and have suggested
that several factors contribute to this phenomenon
(Opherk et al, 1984; Dellsperger & Marcus, 1990).
Studies of pressure/flow relations during maximal
vasodilatation have demonstrated an increase in mini-
mal coronary vascular resistance and an increased
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systolic flow impediment (O’Gorman et al, 1992;
Radvan et al, 1995). Some studies have suggested a
reduction in the number of resistance vessels in
hypertrophied myocardium, others have suggested
that arteriolar density normalize later in hypertrophy
and there were no transmural differences in vascular
morphology and no reduction in volume percentage
capillary space (Cimini & Weiss, 1988; Bishop et
al, 1993). From these results, structural alterations
of coronary artery may not be the primary mecha-
nism responsible for the reduced coronary reserve.
Furthermore, in low and moderate grades of cardiac
hypertrophy, an appropriate increase in coronary
artery size has been reported (Villari et al, 1992).

Ca’"-activated K* (Kca) channels are one of
dominant ion channels found in the plasma membrane
of vascular smooth muscle cells (Nelson & Quayle,
1995). The channels are known to play a major role
in the regulation of smooth muscle excitability by
contro] of resting membrane potential and termination
of action potential (Benham et al, 1986). A growing
body of evidence suggests that vasodilatation of
coronary arteries is mediated by activation of Kc,
channels (Li et al, 1998; White et al, 2000). In fact,
the hyperpolarization of vascular smooth muscle cells
and subsequent vascular relaxation were elicited by
opening of K¢, channels (Holzmann et al, 1994; Node
et al, 1998). We have hypothesized that the alteration
of the properties of Kc, channels plays an important
role in impaired coronary reserve in the hypertrophied
myocardium. However, the extent to which alterations
of K¢, channels occur in association with coronary
arterial electrophysiology in cardiac hypertrophy has
not been explored. The present studies were carried
out to determine the properties of coronary Kc,
channels in normal and isoproterenol-induced hy-
pettrophied hearts.

METHODS
Induction of cardiac hypertrophy

Cardiac hypertrophy was induced in New Zealand
white rabbits by injection of isoproterenol (300 zg/kg)
once daily for 10 days (Benjamin et al, 1989; Gillis
et al, 1996). Age-matched control rabbits received the
same amount of 0.9% NaCl solution only. The
animals were used for experiments 24 h after the last
injection. The degree of hypertrophy was estimated

by measuring the blotted wet heart weight and the
body weight and calculating the heart weight-to-body
weight ratio.

Cell-isolation procedure

Single vascular myocytes were isolated from rabbit
coronary arteries by enzymatic dissociation. Rabbits
of either sex were anaesthetized with sodium pento-
barbital (10 mg/kg I.V.). The heart was quickly
removed and placed in a cold oxygenated Tyrodes
solution composed of (in mM): 143 NaCl, 5.4 KClI,
5 N-[2-Hydroxyethyljpiperazine-N’-[2-ethanesulfonic
acid] (HEPES), 0.33 NaH,PO., 1 MgCl,, 16.6 glucose,
and 1.8 CaCl, (pH 7.4 with NaOH). The left anterior
descending coronary artery was carefully removed
with a portion of myocardium attached to it and was
then pinned down to silicone elastomer layered in a
dissecting Petri dish. The adhering ventricular myo-
cardium and connective tissue were carefully removed
under binocular examination. The arteries were then
incubated for 30 min at room temperature in the same
medium, except that calcium was omitted. Enzymatic
dispersion was then initiated by incubating the artery
for 30~40 min with collagenase (2.5 mg/ml, Wako
Pure Chemical), bovine albumin (1 mg/ml, Sigma
Chemical), and dithioerythritol (0.5 mg/ml) were
added to a Ca-free Tyrodes solution. After 30~40
min of incubation with the enzymes, arteries were
retrieved and rinsed several times with fresh Ca-free
solution. Single smooth muscle cells were mechan-
ically dispersed by triturating of the tissue pieces by
using a Pasteur pipette in Kraft-Brithe (KB) solution
composed of (in mM): 70 KOH, 50 L-glutamic acid,
50 K], 20 taurine, 20 KH,PO4, 3 MgCl,, 20 glucose,
10 HEPES, and 0.5 ethylene glycol-bis ( /5-amino-
ethyl ether) N, N, N’, N’-tetraacetic acid (EGTA) (pH
7.3 with KOH). When a sufficient number of relaxed
spindle-shaped smooth muscle cells became apparent
under microscopic examination, the isolated cells
were cold-stored (4°C) until use.

Experimental procedure and electrophysiological te-
chniques

All experiments were performed at room temperature.
The recording chamber was mounted on a movable
stage of an inverted microscope. The volume of the
recording chamber was ~1 ml. Before each experi-
ment, a sample of the stored supernatant containing
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single cells was deposited in the experimental cham-
ber, and the cells were allowed to settle for 20~30
min. They were then superfused for 5 min with
normal Tyrodes solution before the patch-clamp
experiment was started. Some of the cells contracted
irreversibly during the initial perfusion. Patch-clamp
experiments were only carried out on cells that
remained in a relaxed state. Cell capacitance was
measured by electrical compensation for capacity
transients and series resistance was applied using the
Axopatch 1D, from which cell capacitance was read
directly. Single-channel currents were measured in
inside-out patch configuration using a patch-clamp
amplifier (Axopatch-1D, Axon Instruments, Foster City,
CA, USA). Gigaohmseals were obtained using pipet-
tes of 5~10 MQ resistance pulled from borosilicate
glass capillaries (Clark Electrochemical, Pangbourne,
England) with a vertical puller (Narishige PP-83,
Japan). Their tips were coated with Sylgard and fire
polished. Patches were examined at a holding po-
tential of 0~60 mV, depending on the level of
control channel activity. After a patch was obtained,
an equilibration period of ~5 min was allowed;
patches that showed large fluctuations in channel
activity over this period were discarded. Single-
channel currents were digitized at a sampling rate of
48 kHz and stored in digitized format on digital audio
tapes using a Biologic DTR-1200 recorder. For the
analysis, the data were transferred to a computer
(IBM-PC, 80486 DX2-66) with pCLAMP v 6.03
software (Axon Instruments, Burlingame, CA, USA)
through an analogue-to-digital converter interface
(Digidata-1200, Axon Instruments Inc.). Mean unitary
currents were measured by averaging the digitized
record, using cursors to select open periods. Amplitudes
measured in this way were the same as those mea-
sured by fitting Gaussian curve to amplitude histograms.
The open time histogram was formed from contin-
uous recordings of more than 60 sec. The open
probability (P,) was calculated using the formula:
N
Po = (2 t)/(TaN)
i=1

Where t; is the time spent at current levels
corresponding to j=0, 1, 2, ... N channels in the open
state, Tq is the duration of the recording and N is the
number of channels active in the patch. The number
of channels in a patch was estimated by dividing the
maximum curtent that observed by the mean unitary
current amplitude. P, was calculated over 30-sec

records.
Solutions and drugs

For inside-out patches, the bath solution was (in
mM): 21.22 KOH, 123.78 KCl, 1 MgCl,, 2.4 CaCl,,
3 EGTA, 2 K-ATP, and 10 HEPES (pH 7.4 with
KOH). The pipette solution contained (in mM): 145
KCl, 10 HEPES, 1 MgCl,, 1 CaCl; (pH 7.4 with
KOH). The Ca’", EGTA ratio was adjusted to give
a pCa of 6.96. All chemicals and drugs were obtained
from Sigma Chemical (St. Louis, MO, USA).

Statistical analysis

Data are presented as mean S.E. when appropriate.
Unpaired Student’s ¢ test was used to assess the
statistical significance of differences observed between
control and hypertrophy. P<0.05 was accepted as the
level of significance.

RESULTS
Characteristics of the experimental model

Table 1 summarizes the characteristics of the rabbit
cardiac hypertrophy model used in the present study.
Heart weight and heart weight-to-body weight ratio
were significantly greater in rabbits with isoproterenol-
induced hypertrophy than in control (0.62+0.01 g/kg
in control, n=14 and 0.70+0.01 g/kg in hypertrophy,
n=26, P<0.05). With this in cardiac structure, the
mean cell capacitance (Cm) was 24% greater for
isolated coronary arterial myocytes from isoproterenol-

Table 1. Characteristics of rabbit isoproterenol-induced
hypertrophy

Control Hypertrophy
(n=14) (n=26)
Body weight, kg 1.29+0.06 1.36+0.05
Heart weight, g 7.93+0.41 9.66+0.33*
Hea/r; wifbody Wt 4 651001 0.70+0.01%
g/kg
Heart rate 239.11+0.62 228+7.94

*P < (.05, compared to control
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induced hypertrophy than for control coronary arterial
myocytes (P<0.05; Fig. 1).

Comparing the properties of Kc. channels in
coronary arterial smooth muscle cells

Ca’"-activated K (Kc,) channels are abundant in
smooth muscle cells, and have been very well
characterized in a variety of cell types (Carl et al,
1996). Furthermore, pharmacological (Ishikawa et al,
1993) and electrophysiological (Keef & Ross, 1987,
Leblanc et al, 1994) properties of these channels have
been studied in smooth muscle cells from the rabbit
coronary artery.

The pipette and bath solutions contained 145 mM
K" and 107 mM free Ca>". When inside-out patches
were obtained, the coronary arterial smooth muscle
cells from normal and hypertrophied heart showed a
dominant large-conductance channel that were both
Ca”" and voltage dependent (see Fig. 2 and Fig. 4).
Channel activity was seen at both positive and
negative membrane potential in control cells. Initially
we compared the single channel conductance of Kc.
channels in normal and hypertrophied cells. Fig. 2A
shows a representative large-conductance unitary
current from a normal cell and a hypertrophied cell
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Fig. 1. Whole cell capacitance (Cy,) of isolated coronary
arterial myocytes from hypertrophic hearts (M) and con-
trol hearts ((J). Numbers in parentheses represent number
of myocytes. Cy, values are means+S.E. *P <0.05 com-
pared with control (unpaired t-test).

at positive membrane potential. The channels
underlying these events appeared to be K™ selective
(data not shown) and have a single-channel conduc-
tance, measured as the slope of current-voltage re-
lationship between 0 and +60 mV in symmetrical
145 mM K7, of 321.13+2.00 pS (Fig. 2B, open
circles, n=5). Fig. 2B shows the unitary current-.
voltage relations recorded at membrane potentials
from 0 to +70 mV. Each single channel amplitude
at various membrane potentials was reduced in
hypertrophied cells in comparison with normal cells
(P<0.05). A single-channel conductance in hypettro-
phied cells, measured as the slope of current-voltage
relationship between +20 and +60 mV, was 265+
2.55 pS (filled circles, n=6, P<0.05). The channel
activity was voltage dependent in the positive voltage
range. The NP, in the hypertrophied cells was
significantly less than that in normal cells between +
30 and +50 mV (Fig. 2C; n=7 normal cells, 8
hypertrophied cells; P <0.05). To examine the gating
kinetics of the channels, the open- and closed-time
histograms were calculated at membrane potentials of
+50 mV (Fig. 3). Most of the patches contained
more than one functional K¢, channels. In a few
experiments, however, a single channel was recorded
and open- and closed-times were successfully ana-
lyzed in normal and hypertrophied cells. The open-
time histogram, which was analyzed from the current
record filtered at a cutoff frequency of 10 kHz,
revealed a single-exponential distribution with open-
time constant ( 7o) of 55.73£3.25 ms in the control
(n=3). In the hypertrophy, the open-titme constant ( 7,
=54.3011.65 ms, n=3) did not differ from that in
control (P>0.05). The closed-time histogram analysis
using records filtered at a cutoff frequency of 10 kHz
was fitted using a biexponential function, with con-
stants of a fast (r.) and a slow component (7).
This analysis was performed with closed times > 100
ms to be discarded. The value of r. was not influ-
enced by hypertrophy ( 7.1=0.71%0.04 ms in control,
n=3 and 7=0.72£0.05 ms in hypertrophy, n=3, P>
0.05). The value of r was not also influenced by
hypertrophy ( r,=76.42+43.58 ms in control, n=3 and
7 2=44.85+18.50 ms in hypertrophy, n=3, P>0.05).

Cd’ * sensitivity of K¢, channels in coronary arterial
smooth muscle cells

We determined the difference of the Ca®* sensitivity
of K¢, channels between normal and hypertrophied
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Fig. 2. A. Kc, currents in coronary arterial smooth muscle cells in the inside-out patch configuration in normal and
hypertrophied cells. B. Current-voltage (I-V) relationships of Kca. channels in inside-out patches. Open symbols and
dashed line are for control coronary myocytes, solid symbols and line for hypertrophied coronary myocytes. C. The
NP, of Kc, channels increased with membrane potential in both normal (O; n=7) and hypertrophied (@; n=8) cells
in the inside-out patch configuration. The NP, in hypertrophied cells was less than that in normal cells between + 30

and +50 mV. *P<0.05 vs. normal cells.

cells. The activity of Kca channels, measured as NP,,
was cotrelated with the changes in intracellular con-
centration of Ca’' ([Ca’']). The channel activity
showed a very steep dependence on [Ca®"]; and
complete saturation beyond 0.07 uM. Fig. 4 shows
the concentration-response relations (K¢, channel
activity vs [Ca”]i) obtained from the two cell types.
Each channel activity at six selected concentrations of
Ca’" was normalized to the channel activity recorded
at 0.1 uM Ca’" (maximum). At a low Ca”" concen-
tration of 0.03 M, the channel activity is 94.9% of

the maximum level in normal cells. However, at the
same concentration of Ca’", the channel activity is
only 67.8% of the maximum level in hypertrophied
cells. The concentration-response relations fit well to
the Hill equation. The half-maximum activation
concentration (Kg) of Ca®" was 14.881+0.43 nM in
normal cells and 20.16+2.31 nM in hypertrophied
cells (n=7, P<0.05) and the Hill coefficient is 4.14 =
0.27 in normal cells and 2.28 +:0.44 in hypertrophied
cells (n=7, P>0.05). As shown in Fig. 4, the concen-
tration-response curve of Kc. channel to Ca’" in
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Fig. 3. Kinetic properties of Kc. channels in hypertrophied (right panel) and normal (left panel) cells. Single-channel
currents were recorded at +50 mV in inside-out patch configuration. Histograms of open {A) and closed (B) times
within bursts were analyzed from current records filtered at cutoff frequency of 10 kHz. Smooth curves were fitted
by single-exponential least squares method in the open-time and biexponential least squares method in the closed-time.
Bin width is 0.3 ms. Each time constants were not influenced by hypertrophy (P>>0.05, n=3). 7, Open-time constant;
<1, fast component of closed-time constant; r.,, slow component of closed-time constant, respectively.

hypertrophied cells is shifted to the right compared
with that in normal cells. These data indicate that
Ca’" has a reduced stimulatory effect on K¢, chan-
nels in hypertrophied cells.

DISCUSSION
To the best of our knowledge, this is the first study

determining the features of coronary Kc, channels in
normal hearts and isoproterenol-induced hypertrophied

hearts. We have demonstrated in the present study
that cardiac hypertrophy was induced by daily admi-
nistration of 300 1 g/kg isoproterenol for 10 days. In
this model, there is a 13% increase in heart weight-
to-body weight (HW/BW) ratio. No change was seen
in the lung weight to body weight ratio or in the liver
weight to body weight ratio, excluding the presence
of congestive heart failure in this model. On the basis
of the 13% increase in HW/BW ratio, and the absence
of congestive heart failure, this model can be classi-
fied as mild cardiac hypertrophy (Hart, 1994). Collins
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et al (1975) showed that repeated administration of
a low dose of isoproterenol caused a 13% increase
in both left and right ventricular weight in the rat and
the degree of hypertrophy can be controlled by
administering different doses or altering duration of
administration. Thus this method provides a simple
well-established model with low mortality and high
reproducibility, which provides useful information
that may have a relevant application to clinically
observed disease (Mészaros et al, 1996). Moreover,
significant changes in coronary cell occurred in our
experimental models. The cell capacitance of coronary
arterial myocytes was 24% greater in hypertrophy
than in normal hearts, indicating that continuous
infusion of isoproterenol may cause coronary myocyte
hypertrophy as well as myocardial hypertrophy.
Actually, isoproterenol acts direct stimulatory effects
on protein synthesis in cardiac myocytes (Taylor &
Tang, 1984; Morgan & Baker, 1991; Decker et al,
1993). But, RNA and protein syntheses of coronary
arterial myocytes in cardiac hypertrophy have not
been studied. In pressure-overloaded heart, total RNA
content in the left anterior descending coronary artery
and the left ventricular myocardium was increased,

which indicates an early shift in protein synthesis in
the left anterior descending coronary artery and the
left ventricular myocardium (Gerova et al, 1996).
Many current experiments demonstrated that
vasodilator responsiveness of coronary arteries to both
exogenous and endogenous stimuli was reduced in
cardiac hypertrophy (Bache et al, 1981; Murray &
Vatner, 1981; Hittinger et al, 1990; Vassalli et al,
1995; Kingsbury et al, 2000). As a possible mech-
anism of reduced vasodilator responsiveness of coro-
nary arteries, we hypothesized that coronary arterial
smooth muscle vasoactivity was impaired by altera-
tion of electrophysiological properties of coronary
smooth muscle cell membrane. K¢, channels have
been proposed to play a substantial role in the
regulation of membrane potential and hence the tone
of vascular smooth muscle cells in arteries that
display myogenic tone (Brayden & Nelson, 1992;
Nelson et al, 1995; Nelson & Quayle, 1995). Actu-
ally, recent studies have shown that opening of Ke,
channels hyperpolarizes the cell membrane potential,
leading to increase coronary artery blood flow (Node
et al, 1998) or to produce vasorelaxation (Khan et al,
1998). On the other hand, Node et al (1996) have
shown that iberiotoxin, charybdotoxin or TEA reduce
coronary blood flow by inhibition of Kc. channels.
The Kc, channels are dependent on both voltage
and Ca’". In the excised inside-out patch configuration,
when free Ca’* concentration on the inside membrane
was the same for both normal and hypertrophied cells,
the NP, of these channels was still less in the
hypertrophied cells than in the normal cells between
+30 and +350 mV. This indicates that the decrease
in NP, in the hypertrophied cells may be caused
partly by diminished voltage sensitivity of these
channels. Moteover, in the present study, the unitary
current amplitudes of K, channels was reduced in the
hypertrophied cells. We don’t know the underlying
mechanism of the reduced unitary current amplitudes of
K, channels. However, it is possible that the induction
of coronary hypertrophy by repeated administration of
isoproterenol may induce the alteration of protein
synthesis for K¢, channels. Although there are no
studies available to show alteration of protein synthesis
in coronary arteries, we suggest this possibility out of
some studies in hypertrophied ventricles. Cardiac
hypertrophy is known to induce gene switching to
allow expression of various proteins (Izumo et al,
1988; Simpson et al, 1989; Lee et al, 1999) and
interestingly, catecholamines induce protein synthesis
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of some channels, wheteas hypertrophy in some way
causes also channel degradation (Mészaros et al,
1990). From above results, it is suggested that
reduced the unitary current amplitudes and NP, of
K¢, channels may lead to diminish whole-cell Kc,
currents, which affect the regulation function of Kc,
channels to myogenic tone.

To gain more information about the function of
coronary K¢, channels, we sought to examine the
effects of enhancing its activity by elevating [Ca®*].
Our results were consistent with the concept that
elevation of [Ca’"];, by opening of voltage-dependent
Ca’" channels or spontaneous Ca’" release from sar-
coplasmic reticulum stores, stimulated K¢, channels
(Hume & Leblanc, 1989; Ganitkevich & Isenberg,
1990) and showed that the channel activity was very
steeply dependent on [Ca’"];. But, responsiveness of
Kca channels to [Ca’*]; was reduced in coronary
artery smooth muscle cells with isoproterenol-induced
hypertrophy comparing to normal cells. The activation
of K¢, channels, caused by Ca’* influx, is an impor-
tant negative feedback mechanism that regulates the
level of vascular tone (Nelson & Quayle, 1995). This
regulatory pathway is likely to influence arterial tone
in many vascular beds, including coronary circulation
(Brayden & Nelson, 1992). Therefore, our results
suggest that negative feedback action of K¢. channels
against elevation of [Ca®]; may be attenuated in
hypertrophy, which could not well relax coronary
artery in response to various stimuli. Alterations in
Kca channel activity might also initiate or aggravate
pathophysiological states such as vasospasm and
ischemia (Brayden & Nelson, 1992).

In conclusion, these alterations of K¢, channels
may be involved in reduced coronary reserve in
isoproterenol-induced cardiac hypertrophy. Therefore,
to further determine the role that these alteration of
Kca channels may change in coronary blood flow,
experiments either in cannulated vessels or in wire-
mounted vessels will be necessary. We will pursue
these studies.
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