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PENALIZED APPROACH AND ANALYSIS OF
AN OPTIMAL SHAPE CONTROL PROBLEM FOR
THE STATIONARY NAVIER-STOKES EQUATIONS

HonccHUL KM

ABSTRACT. This paper is concerned with an optimal shape control
problem for the stationary Navier—Stokes system. A two—dimensional
channel flow of an incompressible, viscous fluid is examined to deter-
mine the shape of a bump on a part of the boundary that minimizes
the viscous drag. By introducing an artificial compressibility term to
relax the incompressibility constraints, we take the penalty method.
The existence of optimal solutions for the penalized problem will be
shown. Next, by employing Lagrange multipliers method and the ma-
terial derivatives, we derive the shape gradient for the minimization
problem of the shape functional which represents the viscous drag.

1. Introduction

We deal with a specific drag minimization problem in two-dimensions.
We consider a channel flow with a bump to be determined according to
the scheme to minimize the drag profile. Existence results for this prob-
lem were given in [7], where one may also find a derivation of the model
problem and motivation for the study. In this paper, we are concerned
with a penalized approach to the state equations to the problem. In [8],
we dealt with the penalized stationary incompressible Navier—Stokes sys-
tem with the inhomogeneous Dirichlet boundary condition imposed on the
part of the boundary. By employing the parameter-dependent nonlinear
functional settings as in Brezzi-Rappaz-Raviart framework([2]}, the exis-
tence and convergence results for the penalized solutions of the stationary
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Navier-Stokes systems were shown in [8]. Combining those results, we will
show the existence of optimal solutions to the minimization problem.

Shape sensitivities are concerned with the relationship between available
control parameters and responses of the state variables and shape function-
als to variations on those parameters. Such relationship can be embodied
essentially by finding the shape gradient. For this purpose, we establish
adjoint equations by employing Lagrange multipliers and then apply the
material derivative method to compute the variation of the shape parame-
ter. The shape gradient for the shape functional is systematically achieved
with the help of Lagrange multipliers. The justification of Lagrange mul-
tipliers and numerical analyses for the problem will be discussed in the
subsequent papers.

The plan of the rest of the paper is as follows. In the remainder of
this section, we describe the model problem and introduce some notations.
Then, in §2, we show the existence of optimal solutions. In §3, we em-
ploy the Lagrange multipliers technique to induce adjoint equations for the
systems. By taking the material derivative method, we derive the shape
gradient for the shape functional.

1.1. Description of the problem

We consider the two—dimensional incompressible flow of a viscous fluid
passing through a channel having a finite depth; see Figure 1. Let g; and
g be the preset velocities at the inflow I'; and outflow I'; of the channel,
respectively. Along the bottom and top sides of the channel the velocity
vanishes. The arc T'y(a), which is part of the bottom boundary, represents
the bump, which is to be determined.

Let the boundary shape corresponding to the bump be represented by
the graph of the curve a : [M;, M3] — R. The domain {2, is composed of
two fixed rectangles and a domain with an unknown boundary. Thus, the
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FIG. 1. The domain Qg for flow through a channel with a bump.
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domain 2, is determined by the shape of the unknown boundary I'y(c)
which we assume is given by

To() = {(z1,22) € [M1, M2] % [0, L] | 22 = a(z1)},

where a(x1) is a function to be determined by the optimization process.
Assume that T'p{a) C [My, Ma] x [0, L] and that both end points of I'y(a)
are fixed (at x; = M, 29 = 0 and z; = Ms,z; = 0) for all admissible
domains. Since the domain (2, is determined by the shape of I',{a), one
may define the admissible family of curves defining I'y(«) as follows:

Upg = {a € C¥([My, M2]) | 0< ofz1) < L and
(1) — of@1)| < Blaey — Fu| Yy, Ty € [My, My,
a(My) = a(M;) =0},

where the positive constant 3 is chosen in such a way that U,y # @. We
have denoted the set of Lipschitz continuous functions in [M;, Ms] by the
symbol C%1([M;, M;]). The condition |a(z1) — a(Z1)| < Blz1 — Z1 is
invoked to prevent the “blow-up” of the boundary, i.e., to suppress excessive
oscillations of Tp(e) (c.f. [9]).

We consider, for each a € U,4, the penalized stationary incompressible
Navier—Stokes equations

(1.1) —vAu,+ (u,-V)u,+Vp.=f in Q,
and
(1.2) V-u, = —ep, in Q,

along with the Dirichlet boundary conditions

g1 on I}
(1.3) u=g=<¢gs on I
0 on I'3UlG(e),

where f and g;, i = 1,2, are given functions and ¢ > 0 is a given param-
eter. Here, v denotes the kinematic viscosity in the nondimensional form
corresponding to the reciprocal of the Reynolds number He and f the given
external body force. Note that the constant density has been absorbed into
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the pressure and the body force. For the compatibility and regularity of
solutions, we assume

(1.4) support of g; CT'; and gl-ndI‘+/ go-ndl =0.
r, 2

The penalty method is often introduced to relax the incompressibility
constraint with regard to Navier-Stokes system by introducing an artificial
compressibility —ep, instead of the incompressibility constraint and to-ex-
pect the near incompressibility. For the existence and convergence results
for the penalized systems (1.1)-{1.3}, one may consult [8]. The major ad-
vantage of penalized formulation is the elimination of the divergence free
constraint and the pressure term. This will reduce the problem size and

may facilitate the complicated sensitivity analysis. For € > 0, one can set
V- u,

Pe = — By eliminating the corresponding pressure term, we can

€
pose (1.1)—(1.3) into the following formulation in which only velocity is
involved:
—v Au, + (u, - V)u, — %V(V ‘u)=f in Qu,

u, =g on J€,.

(1.5)

After finding u. from (1.5), the appropriate pressure p. can be easily re-
covered.

One can examine several objectives for determining the shape of the
bump, e.g., the reduction of the drag due to viscosity or the identification
of the velocity at a fixed vertical slit downstream of the bump. To fix ideas,
we focus on the minimization of the cost functional

(@) = T (R, ele) = 20 ] D(u,) : D(u,) dS2

Bum Otte iy 2
2 Z/ Oz; 8.'3:) dit,

#i=1

(1.6)

where u.(a) is a solution of (1.1)-(1.3) in Q4 and D(u.) = (Vu+{Vuc)?)
is the deformation tensor for the flow u.. This functional represents the
rate of energy dissipation due to deformation. Physically, except for an
unimportant additive constant whose value depends on the data f, g;, and
g2, this functional represents the viscous drag of the flow. In (1.6), the
colon denotes the scalar product operator between two tensors.
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The extremal problem we consider is then given as follows:

min J(Qa,u(e)) such that
(1.7) *Cad
u () is a solution of (1.5) in Q, .

1.2. Notations

We denote by H*(D), s € R, the standard Sobolev space of order s with
respect to the set D, which is either the flow domain Q,, or its boundary
I, or part of its boundary. Whenever m is a nonnegative integer, the inner
product over H™(D) is given by

(f, Dmp =(F9)0p+ > (D ,Dgop,

0<|A|<m

where (f,g)o,p = [p fgdD denotes the inner product over H*(D) = L¥*(D)
and A denotes a multi-index. Hence, we naturally associate the norm on
H™(D) with ||fllmp = /(f, f)mp. Whenever there is no chance for
confusion, we will let (-, )m .. = (,*)m and || - flm0, = || - [[m for the
flow domain 2,. For vector-valued functions and spaces, we use boldface
notation. For example, H*(D) = [H*(D)]" denotes the space of R "-valued
functions such that each component belongs to H*(D).

For each a € C%([My, Ms]), let [y = T3 UT,(a) and Ty =T UL so
that 9, = 'y UTy. Since ue = 0 on I'y, we may define a generalized
velocity space as

Vo=Hf (Q.)={veH" ()| v=0onT,}.

Let V2, be the dual space of V,,. Note that V7, is a subspace of H™1(2,),
where the latter is the dual space of H}(Q2,). The duality pairing between
V: and V, is denoted by < -,- >_;.

Let W, = HY/3(T',) = {s e HY%(I') |s = 0 on ', }. Let W denote
its dual space and let < :,- >_y/5p, denote the duality pairing between
W7 and W,.

Since I', is smooth, the trace mapping v, : H'(2,) — W, = HY%(T,)
is well-defined and W, = v,(H}E_(Q,)) = 7,(V.) for each o € Unq. Now,
let g be an element of W, = H!/ 2’(1"5,). It is well-known that W, is a
Hilbert space with the norm

= inf .
”gul/z,r‘g Vévaigrgvzg vy, 24 Vge W,
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Let s* belong to W,. By the definition of the dual norm, we note that

<sh g >
s"[-1/2,r, = sup 8 Z-1/20, Vs € W,.
gEW,, g#0 “g”l/z,rg

It is shown in (7] that

< 8"y, v >
(1.8)  lIs*l_yjor, = sup 2 TRl yer e W
T2 VeV, v0 vl g,
provides an alternate and equivalent definition for the dual norm || - || _1/2p, -

Whenever s € W2 and v. € V, we will simply write
<8,V >_yr, instead of <s,yr,v>_1/271,- :
We define the space of generalized pressures to be

Sa=14(0) = {pe1¥@) | [ pan=o}.
Qa
Thus, S, consists of square integrable functions having zero mean over £{1,.

2. Existence results of optimal solutions

" We now show the existence of optimal solutions satisfying (1.7). We first
recast this problem into a precise function space setting.

2.1. Weak formulation of the state equations
For the weak variational formulation, we will use the forms

ax(u,v) = 2/;2 D(u):D(v)dQ Vu, v e H{(Q,),

f;ca(u,v)=fQ (V-w)(V-v)dQ Vu, veH(Q),

bo(v,q) = —fn ¢V -vdQ YveHY Q) g€ (),

and

ca(w,u,v)=/ (w-Viu-vdQ Vu,v,weH(Q,).
Qn

Obviously, aq(-,+) and du(:,-) are continuous bilinear forms on H'(Q,) x
H!(5)), and b, (:,-) is a continuous bilinear form on H'(,) x L?(QW);
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also, ¢4 (:,", ) is a continuous trilinear form on H!(2,) x H(§2,) x H(£2,,)
which can be verified by the Sobolev embedding of H!(Q,) into L*(Q,)
and Holder’s inequality (c.f. [5], [12]). Moreover, we have the coercivity
property

21) aalv,V) 2 CIVIE Vv eV,

and the inf-sup condition (or LBB—condition)

(2.2) inf  sup balv.a), >C.
9€5a vemi(a,) VIiallo

One can show that (1.1)-(1.3) have the following weak formulation: for
each o € Uyq, find u. € V,, p € 5,, and t. € W, satisfying

(23) Vaa(usav) + bcr(v:pe) + ca (um U, V)
— <tV >oapr,=<f,v>_1 VWweV,,

(24) ba (u& Q) = f@e:Q)D Vq € Sa
and
(25) < S*, 1, >—1/2,F9=< S*,g >_1/2,[‘g Vs* € W; .

In showing that (2.3) is a weak formulation of (1.1}, it is convenient
to replace the viscous term in the latter with 20V . (D(u.)). Also, since
Ty is smooth, the trace mapping <, : Vo — W, is well-defined and
W, = v,(V,) for each & € U,4; hence, (2.5) is well-justified. Note that
the inhomogeneous boundary condition on the velocity is enforced weakly
as in [6)]. )

By eliminating the pressure term p., (2.3)-(2.5) can be simply written
by

1
vaq(u.,v) + co{ue, u., v) + Eda(ue, v)
(2.6) — < teyvgV Z_1/2,0,=< f.v>_, ¥YWwveV,,
<8 u, Z_1j2,r, =< s*,g >_1/2,T, Vs' € W, .

It can be easily shown that (2.6) is a weak formulation of (1.5) and that,
in the sense of distributions, t. is given by

1
(2.7) te=-pn+2vD(u) -n= ;(V ‘ugn+2vD(u.)-n onT,.
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This corresponds to the stress force along the inhomogeneous boundary I'
due to the penalized deformation.

In [8], we have shown the existence and convergence results by employing
the nonlinear functional setting. In regular branch the penalized solutions
have the similar pattern with the unpenalized solutions([8]). For the com-
pleteness, we state main results of {8] modified to fit into our problem.

We first invoke the nonlinear functional formulation as in [2] and [5]
and then we recast the unpenalized primal Navier-Stokes systems into the
corresponding functional setting. We take X = V, x S x W, Y =
V* x W, and Z = L32(Q,) x {0}. For the parameter, we take A =

1 .
Z = Re € A ¢ RT, where RT denotes the nonnegative real numbers
14

and A a compact interval in R™ — {0}. We define the solution operator
Q : Y — X for the Stokes problem with inhomogeneous boundary conditions

by Q(f, &) = (,7,t) if and only if

aa(ﬁ:v) + ba(vaﬁ)“ < ?,’ng >—1/2,Fg=< f,v >_1 VWEV, ’
(2.8) bo(@,q) =0 Vg€ Sa,
< s",1d >_1/2;1-|g =< S*,g >_1/2,T, Vs* € W; .

The nonlinearity of the Navier—Stokes systems is taken into account by the
mapping G : A x X =Y ( (A, (w,q,{)) — (n,¢) ) defined by

<N,v>_1=A(w,w,v}—-A<f,v>_; VveV,,

2.9 . * * *
(29) <S8 1¢'>*1/2,F9= —<8§,g>_1/21, Vst € W,

where (f, g) is given in V] x W,.
Since the weak formulation of the Navier—Stokes equations can be writ-
ten by

ao (W, vy+ba(v,Ap)— < At,v>_ypor,
=—[Acp(u,u,v) — A< f,v>_] VWWEV,,
bo(u,Ag) =0 Vg€ S,,
<su>_jpr, =—[-<s8",g>_1p2r,] V8T € WL,

(2.10)

and the mapping G corresponds to the weak formulation of

{n=)\(w-V)w—Af,
$=-g.
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Substituting w = u, we obtain from (2.10) that ¢ = Ap, { = At and
(u, Ap, At) = —QG(u, Ap, At). Hence, we have

(2.11) {u, Ap, At) + QG(A, (u, Ap, At)) = 0,

which is equivalent to the weak variational form (2.10) of the primal sta-
tionary incompressible Navier—Stokes system.

Existence and convergence results when € tends to 0+ for solutions of
the system (2.3)-(2.5) are contained in the following theorem; for a proof,
one may consult [8].

THEOREM 2.1. Let o € U4 and let the data satisfy f € V), g € W,
and the compatibility condition (1.4). Let {(X, (u(A), Ap(A), At(A)}) | A

= 1 € A} be a branch of regular solutions of (2.10). Then, there exists a

neizhborhood O of the origin in V, x S, X W} and for € < € small enough,
a unique C? branch {(\, (ue(N), Ap(A), Atc(A))) | A € A} of the penalized
system (2.3)—(2.5) such that u.(A) —u(A) € O for all A € A. Moreover,
there exists a positive constant C, independent of € and A, such that

[ac(M)—u(Nl1 0. + IPe(A) = p(M)lo.0a

2.12
( ) + ”tE(A) - t()\)”_l/z,pg < Ce YAe A

2.2. The extremal problem

In the notation introduced in §1.2 and §2.1, the cost functional J defined
in (1.6) can be expressed in the form

(2.13) J{a) = J(a,uﬁ(a)) =2 f D(u,) : D(u)dQ = va,(u.,u.).
Qe ,
We introduce the admissibility set of controls and velocities

Voa = { (e, uc(@)) € Upy X Vi | J(a,uc(ax)) < oo, and there exists

t.(o) € W2 such that (uc{a),t.(a)) is a solution of (2.6) } .

Then, the extremal problem (1.7) can be restated in the following precise
form:

(2.14) min J(o,ue(a)).

{o,ue(a))EVaqg

The existence of optimal solutions for the problem (2.14) can be shown
in the similar manner as in [7].
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THEOREM 2.2. There exists at least one optimal solution (a*,u.(a*))
€ V,q for the problem (2.14).

Proof. The nonemptiness of V.5 follows from Theorem 2.1 for the exis-
tence of regular branches of the penalized solutions. All the other concerns
are similar to 7] except that t.(a*) may be evaluated directly from the
weak lower limit of minimizers in V4. |

3. Shape sensitivity by using Lagrange multipliers

In this section, we are mainly concerned with the shape sensitivity anal-
ysis for the problem (2.13). Sensitivity analysis in a shape control problem
is the study of the effects on the shape functional and potential constraints
due to variations of the shape parameters. Given any shape, a sensitivity
analysis is used to determine if it is a stationary point in design space for
the relevant shape control problem. Qtherwise, one may try to improve
the given design of shape locally. Improvement of performance can be
achieved iteratively by following the gradient of the shape functional. This
is based on the existence of Gateaux derivative of the shape functional and
constraints in the direction of perturbation of shape parameters.

In this section, we wish to derive the information for the shape gradient.
For this purpose, we employ the Lagrange multipliers technique to get the
adjoint systems, and with the help of the material derivative method, we
obtain the shape gradient for the functional 7. For the concrete structure
for the material derivative method, one may refer to [11] and [13]. Strict
mathematical justification for the existence of Lagrange multipliers will be
verified in ensuing papers.

3.1. Domain perturbations

To begin with, we parameterize the shape perturbations. We consider
the following homotopy to describe the domain perturbations to fit into our
purpose.

(3.1) Fip)=p+tV(0,p}=(Z+tV)(0,p) for 0<t<a,

where o > 0 is small enough to ensure the diffeomorphism of the homotopy
Fi. From the second expression, we can regard F,(p) as a first order
perturbation of the identity operator over the reference domain. The choice
of V is crucial in the shape sensitivity analysis. In our problem, we want
to keep the variation of I'y(a) within the rectangular region §2; depicted by
the shaded region in Figure 2, i.e., we want that T'y(c) C §y for every
a € U,g. Note that then 2, C ﬁ, where the latter is the rectangular
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F1G. 2. The domains Qy (top) and 0 (bottom).

lomain also depicted in Figure 2. An appropriate choice for the velocity is
~ then given by V = (0, V5)7.

Utilizing the mapping technique, V, can be characterized as follows. For
a fixed o € U4, we associate a bijection

Fo: Q— Q (Z1,72) = (p1,12))
via
L+ (Tz — L)(L — o))

p1=21 and py= L
To otherwise.

if My <% < Mo

Let 9 € C%Y{[M, My]) such that #(M;) = ¥(Mz) = 0 and there exists

o > 0 such that the graph of o + td lies in Q for 0 <t<o We may
extend ¥ to [0, M] by defining ¥ = 0 over [0, M;] U [Ma, M]. If we consider
a bijection

ch+t19 . QQ e Q(a + t'l9) ((/55\1,56\2) (ane 4 (.’L‘l,SL‘z)) N

the composite FoyewoFyt: Qo — Qa+t9) ((p1,p2) — (21, 22)) is given

by

(p2 —~ L)d(p1)
(apr) — L)

P2 otherwise .

P2+t if My <py < M,

(3.2) =z =p;and z, = {

Since 0 < ap1) < L for all p; € [M;, M,], the mapping (3.2) is well-defined
and (z1,22) = (p1,p2) + t (0, Va(p1, p2)), where

(p2 ~ L)}V(p1)
(3.3) Va(p1,p2) = (a(p1) — L)

0 otherwise.

if My < pp < M,
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Hence, for the perturbation of the domain, it is reasonable to consider the
transformation '

Fe(pr,p2) = (p1,p2) + tV(1,p2) = Foyes o Fy ' (p1,72)

where V = (0,V2)7 is an autonomous vector field. Clearly, F; is a one-
to-one transformation from €, onto Q(c + t¥) whose inverse is given by
Fi Mz, 2) = (p1,p2), where

s g (L= 220
p1 =1 and pz = (a(z1) — L+ td(z1))
xo otherwise.

if My <z £ My

Note that V(py,a(p)) = (0,9(p))T for all p; € [My, Mz]. Thus, V =
(0,97 along T',(«) and V = 0 along 92, — I's(a).

3.2. Lagrange multipliers technique and adjoint equations

We now want to define adjoint variables which will enable one to compute
the shape gradient without having to directly consider the equations dealing
with the shape sensitivities. Formally, one may derive equations for the
adjoint variables by introducing the Lagrangian £ : Upax Vo x Vo x W5 —
R defined by

'C(aruﬂ”'e:TE)
1
:j(a’ ue) - {Vaa(ueu“e) + Ca(ue:aue,#e) - Eda(uea.ue)

— <tepe>o1por, —<ffhe > 01— <T,ue—8>_1520,},

where t. € W, is given by (2.7) and (g, 7Tc) € Vo x S x W, are the
adjoint variables. Formally, the adjoint equations are defined from the
Euler-Lagrange equations for the Lagrangian.

Clearly, variations in the Lagrange multipliers g, and 7. recover the
constraints (2.6). From the variation in the state variable u., one can derive
the adjoint state equations by assigning a suitable boundary condition 4, =
0 on the whole boundary 9€2,;

(3.4)

v/ VpE:VWdQ+/ (w-V)ue-pedﬂ+/ (ue - V)w - p d2
Q. Q. Qq

+%/ (V- -p)(V -w)dQ+ <7, W>_jor, = 21// Vu,:wdf?
QQ Qa
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for every w € V, and
(35) < 8%, 14, > 172,80, = 0 Vs* € W:; .

To derive the equations for g, and 7., we first note that

| v pedns [ Vywepdn
Qa

o

2 Oue; ow;
= Z /Qa (w_jgj#ei +U5j8—$;,uei) das

1,j=1,2

2
i s Outej
. § O e e T, s ) A
-/QQ (P"ej Bml We T te Ba:j i 3:1’13' uﬂwt)

i,5=1,2

=/ﬂ (B (Vu)” - uc () = (V- u) ) - wdQ,

using integration by parts and g, == 0 on 9Q,. Applying Green’s formula,
the (3.4)-(3.5) yields

~vAp + pe - (Vu)T —ue - (Vi) — (V- ue)

(3.6) 1 _
_EV(V ‘i) = —2vAu, in 2,
(3.7) #.=0 on 990,
and
du, dp, 1
(3.8) Te=2v n  on Z(V -pn on 9, .

The equations (3.6)—(3.8) can be interpreted as a penalized version of lin-
earized adjoint incompressible Navier-Stokes equations given by

—vAgq+q-(Va)T ~u-(VQ)+ VE=—2vAu in Qa,
(3.9) V-q=0 in 4,
q=0 on 9.,

where u is a solution of the incompressible Navier—Stokes equations (2.10)
and & corresponds to the adjoint to the pressure p. The penalty term for
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1
(3.9) is introduced by &, = —E(V- ). In this case, 7, of (3.8) corresponds
to the penalized adjoint stress vector of

(3.10) T= 21}-2—3 — Vg—g +&n  on d9,.

Hence, (3.4)-(3.5) can be interpreted as an adjoint of the weak penalized
formulation of the linearized equations (3.9) together with

du Oth,
(B11)  <7e8> 1ypr,=< WGt — v

1 .
— E(V . ue)n,s >_1/2,{‘g

for every s € W,,.

3.3. Derivation of shape gradient

For the specific problem considered in this section, the following two
canonical types of shape functionals are useful:

31(73:):] ydD; and 32(Dt)=f Yo dODy ,
D, D,

where y,(x) = y(f,x) is a function defined on D; C D or 9D,, respectively.
Let ¥ be a uniform extension of g in D. Then, under some reasonable
assumptions on the regularity for the feasible domains and the class of
functions, one can obtain

(3.12) d3(D; V) = fD % D + /@ D(V(O, ) - 0)yoddD

and

(3.13)  d(D;V) = fw [%g +(V(0,-) - n) (% + fsyg) ] daD .

Here, x denotes the curvature of the boundary curve D when the spa-
tial dimension of the domain is 2 and the mean curvature of the boundary
surface D when the spatial dimension is 3. These formulations were in-
troduced by many authors. For derivations, one may refer to [11] and [13].

In these two standard examples of functionals, dJ;(D; V) consists of two
main components: a linear term V - n on the boundary and a shape deriv-

. ~ o~ oy . .
ative term §' = §'(D; V) = Ey In order to obtain the shape gradients,
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it should be justified that V — %‘;—(D; V) is linear and continuous over

appropriate admissible vector fields. This implies that 7'(D; V) should be
represented as a linear function of V.

We now consider the variation in the shape parameter o € U,;. We
notice that

alélg}:d j(a) = alélgl?d £(C£, U, He, Te) »

whenever (g, T¢) is a solution of (3.4)—(3.5). Thus, computations of the
design sensitivity may involve the sensitivity of the state variables and
adjoint state variables. Recall that V = (0,9) along I'y(c) for any 9 €
CY1([My, My)) such that 9(M;) = 9(M2) = 0. Since the perturbation of
a domain is determined by the variation of the boundary part I, for the
computation of angrf , J (), we try to find a semi—derivative

li

=0+ -0+ ’

dJ(a;ﬁ)E%J(aHﬁ)t -mw

where oy = a + 9 for 9 € COY{[M,, M;]). From this, we wish to derive
the information for the gradient of the design functional.

Throughput, we set Q,=Q,, and V(0,-) = V(0) for the sake of brevity.
Let uc(c;) € H'(2,) be a solution of the penalized incompressible Navier—
Stokes equations over £, which is represented by the following integral
formulations:

v | Vue(a:): VwdQ + | (u(az) - Vu(oy) - wdid,

Q. Q.
(3.14) +: L (V- u (@) (V - w) d — v
1

€ s

Ju,(ay) _

r: n;

Wd.].—‘g
(V uelog))(w-ny)dly = / f-wdsl;,
Q,

for w € H!(€2;) and
(3.15) ul{m)=g on I’ .

Here, I': = 9€;, and n; denotes the outward unit normal vector along
T';. The function space H(£2,) is dependent on time ¢. To remove of this
dependence, we apply the uniform extension property(c.f. {1] or [4]).

Let Ge(t,x) = Py(uc(ay) o Fp) o F;yH(x). Then, G(t,-) is a uniform

—

extension of u.(a;) to € such that u.(oy) = ﬁ|{t}x9t. From (3.12), we
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have that

dJ(a; %) = {%21/./9 D(u{ay)) : D(uc(oy)) dﬂt}

t=0"+

= 4v | D(u(a) : D(E)dQ + 2v / D(u.(@)) : D(uc(e)) V(0) - ndT,
Qa [7 193

=2v | Vuca): Vi, dQ + V/ Vu{a): Vu(a)V(0) -ndl,
Qo eR

where Ui, denotes the shape derivative for the uniform extension 4, in £ of
u, in . :

!
1
Notethatn:( - , — )overFaanddP=\/1+a’2d:v1,
Vita? 1+a?
da(zy)

where o/ (x,) = I
1

Since V = (0,9) on ['y{a) and V(0) = 0 on 38, — I's(a},

Vu.(a): Vu.(a) V(0) -ndl’
82

My
= — / Vu(zy,a(z))): Vu(z1, a(z1)) 9 {z1) dzy .

My

Thus, we obtain

A7 (o 8) =20 f Vu,(e): Vi, d2
Qo

(3.16) o

- y Vu(z;,a(z1)): Vu(z1, alz:))d(z1) dz; .

Since d.7 (a; %) contains a shape derivative term U}, we may use the state
equations and its adjoint equations to eliminate it.

Let us consider the state equations (3.14). One may take w € H(Q) N
V.. Take the derivative of both sides of (3.14) with respect to time ¢.
Since f and w are independent of ¢, by the similar computation to (3.12),
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we obtain the following equation at t = 0% :

v | Vil:VwdQ +/ (W - Viuc(a) - wdQ
Qo Qy

+f (ue(a)-V)ﬁ’E-wdQ+%/ (V-)(V - w) d)
Q Qa

[

_ /MM (vWue(): T+ 2 (V- u(@))(V - w))Ben) oy

(3.17) al | alglft) wr)

d
dt

+ / ((ue(a) V) ue(a) - w) (V(0) - m) dT
o,

t=01

3 (2 [ 7wl mar)

t=0"+

:f (f - w) , V(0) - ndl.
CIe
Since w = 0 on ', and V(0} = 0 on I'y, we have

/ (f-w)V(())-ndI‘=/ (f -w)V(0) - ndl' =0.
an, Iy

Similarly, / ((us(a) - Vue(a) - w) (V(0) -n)dll = 0.

Next, we c0n51der d [ dula) wdl; and — / (V-ue(ag))(w-ng)dly.
dt r, ony

For these computations, we need the surface measure of the transformation.

LEMMA 3.1. Let Q; be a domain in R™ which is transported by a one-
to—one transformation F, and let Ty be the boundary of Q,. If h is an
integrable function defined on I'y, we have the following formula for the
transformation of boundary integrals:

(3.18) /P hdl; = fr (ko F) det(DF)|(DF; ) n|gndT.

For the proof, one may refer to {11] or [13].

Here, w(t) = det(DF)|(DF; ) n|gn is the cofactor of the Jacobian
matrix DF;, and w(t) dl" denotes the surface measure due to the transfor-
mation F;. It is easy to check that w(0) = 1. For our purpose, we need
the following facts.
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LemmMma 3.2, It follows that

d
= det(DF)| _ = V-V(0).

(3.19)
Proof. Let

Fe: R"3(p1, -+ yPn)— (21, - ,2n) € R™, where
:‘Ui:mi(t?pl7'..?pﬂ)! iz]‘!‘"!”'

n .
We can write det(DF:) = Y (sgno) [] —-Qf_’—, where S, denotes the

oes, i=1 3190(2')
permutations over {1,--- ,n} and sgno the sign of a permutation o.
d . 8 0z; 11 O
— det(DF) l (sgno) Rt * ’
dt ;,Z:::lags:,, (apa(j) ot i—Hﬁ ) apd(%)) t=0+
= Z Z (sgno) (Bp H 8.0 (i) )
j=loesS, i=1(,%5)
°. 9
=25, Vi) =v-V(),
i=1 p‘?
where §; ; denotes the Kronecker delta. _ O

LeEMMA 3.3. If[0,0) 3 t — w(t) is differentiable,

(3.20) w’(O) = —w t)l =V.V(0) - (DV(0)n) - n

Proof. We first note that

DFy|

and
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r

It is clear that o (¢)? = (det DF,;)?((DF, )TD.ﬂ‘ln)-n. Taking derivatives
with respect to ¢ and evaluating at ¢ = 0+, it follows from (3.19) that

2w(0)w’ (0) = 2(V - V(0) — ((DV(O))n + (DV(O))Tn) ‘n
— 2(V - V(0)) — 2((DV(0))n) ‘n

Since w(0) = 1, the result follows immediately. d

The expression (3.20) defines a differential operator on the boundary sur-
face which is called the tangential divergence. This introduces an operator
Vr- on the boundary:

Vp-V=V-V~(DVn)-n

REMARK. The corresponding (pseudo-)adjoint to Vr is the tangential

a ,
gradient Vr which is defined by Vrp = Vi — a—(ﬁ 'n, i.e., Vr assigns  the
tangential component of its gradient. Combined with the following formula
for the boundary integral

/r V- (¢V)dl
(3.21)

=f(VpV)godl"+/V-Vpgde‘zfmpV-ndI‘,
r r r

they are fundamental tools to deal with variational problems defined on
the boundary surface of a domain (c.f. [10] and [13]).

We return to the computation for the boundary integrals. From (3.18),
we have

[ e & [

i,7=1

—Zf 8““(0“ w; w(t)dr,

1,7=1
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forw=0 albng I',. Since n; = n = constant along I’y for all 0 < < o,

dt(z / au“ at) z‘w(t)dI‘) .
Z/F [ (3”“ +v(-‘-9f§fmg&))-v(0))w

1,7=1 Z;
Buﬂ (a)

8uﬂ( )
dx;

(V- V(0)) +

" VFV(O):l

Since V(0) = 0 along T, this computation is reduced to

d due(az) au!
. o [ el = <. wdl.
(3.22) % ), om, wdls s ., on w

In a similar manner, we can show that

(3.23) %fp V(uc (o)) w - ngdly

=f V(i) w - ndl.
—o+ Jr,

Therefore, from (3.22)—(3.23), (3.17) is simplified to
Vf Vﬁ;:deQ+f W, - V)uc(a) wdQ
Q, 2,

+] (u(a) - V)T, - wd + - /(v NV - w)dS
(3.24) " s .

—-v A 5‘1: Efr (V-ﬁe)w‘-ndl"
—sz (vVu,;(a) Vw+ = (V u{a))}(V - w)) (z1)dz, =0.
M,

Next, we consider the adjoint equations (3.4)—(3.5). If we substitute w =
i, then (3.4) may be written in the integral form :

/ Vu,: Vi, dQ-’r—f (A, - Viu(a) - pdS2
329+ [ (e V)L ped L [ (Top)(T @0

+[ Te-ﬁedl"=2u/ Vue(e): Vi d.
T Qﬂ

g
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By substituting w = g, into (3.24) and using the fact that g, = 0 along
o1, we get

vf Vﬁi:VpEdQ-l—/ (0 - V)ue(e) - g d2
Q. Qo
= 1 ~7
@26) + [ ())& w2+ [ (V8T w0

- f : (uVue(a) Vi + 1(V ~u () V- pe)) ﬂ(ml)dml =0.
My €

Hence, it follows from (3.25) and (3.26) that
2vf Vu,(a): Vi, d2
Qo

(3.27) = fM ’ (uVue(a) : Vi + %(V ‘u(a))(V - ,uf)) Haxy) dxy

+/ T U, dl.
r

For the computation of frg 1. -1, dl, we note that G, = u.(a) = g on 9,
where g is given. So, the material derivative of i is given by u. = Vg-V(0)
on 1. Using @i, = U, — Vi, - V(0), we get

u, = V(g —ulfa)) - V(0) on 0.

Since g — u.(a) = 0 on 94,, the gradient of g — u.(«) is parallel to the
normal direction. Hence,

(3.28) ﬁ;:‘%g—_azf@-’fnn-vm) on 99,

However, since V(0) = 0 along 9, —I'y(a) and g = 0 on T',, we obtain

My
(3.29) f Te U.dl = Ou. (o)
1 M, 311

Therefore, it follows from (3.16) and (3.27)-(3.29) that
dJ (a; 9) '

= 21}_/ Vu(a): Vi, V(0) - nd2 + I/f Vua): Vu.(a) V(0) -ndl
Q r

' ‘l’ﬁ(a) 19(5[71) dSL'] .

= /Mz [—que(a):Vue(a) + (uV’u..;(ct):V,u.e + %(v'ue)(v'“e))

My
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Recall that V(0) - ndl’ corresponds to — ¥(z;)dz;. Hence in the sense of
Hadamard’s structure{[3] or [11]), we may say that the shape gradient of
the design functional .7 is given by

9.(ls) =VT

_ [Vwe(a) Vua) = (vPula): T+ LV u)(T 1)

(350 (02 )|

(3.30)

along the perturbed boundary, and 0 along the boundary of unperturbed
region. '

Let us summarize the above discussion in the following theorem.

THEOREM 3.4. Let J(a) = 2v [, D(u.(e)): D{uc(a))d be the de-
sign functional which represents the energy dissipation due to the flow for
a given (a,u.(q)) € V,q. Then, the shape gradient of J is given in the
form of (3.30), where u, is a solution of the state equations (2.6} and g, is
a solution of the adjoint equations (3.6)—(3.8) which represent the weak lin-
earized incompressible Navier—Stokes equations, respectively, with respect
to the fluid domain 1,

REMARK. In the computation of (3.22) and (3.23), the curvature s as
for (3.13) does not appear. This is due to the choice of a trial function w
and n; = n along I';. For any unitary extension A of the normal vector
field n on T, the curvature (or the mean curvature to the surface) is given
by

K= an =V- N

In the 3-dimensional case, the computation of the mean curvature to the
surface is nontrivial.
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