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ON A FUNCTIONAL EQUATION ON GROUPS

Jukanc K. CHUNG, SOON-Mo JUNG, AND PrRASANNA K. SAHOO

ABSTRACT. We present the general solution of the functional equation
F@yn, waye) + fl@yy V,32) + flm, 222 )
= faiyl zays )+ flman, ) + f(@1, Tays).

Furthermore, we also prove the Hyers-Ulam stability of the above func-
tional equation.

1. Introduction

In a paper of Kannappan and Sahoo [8], it was shown that if the qua-
dratic polynomial f(z,y) = az? + bz + cy? + dy + ezy + « with a # 0 and
¢ # 0, is a solution of the functional differential equation

Flz+hy+k) - flz,y)
= hf{z+0hy+0k)+kfy(z+0hy+0k), 0<6<],
for all z,y,h,k € R (the set of reals) with 2 + k2 # 0, then 6 = 1/2.
Conversely, if a function f satisfies the above equation with 8 = 1/2, then
the only solution is a quadratic polynomial. Here f; and f, represent the
first partial derivatives of f with respect to = and y, respectively.

To establish this result, Kannappan and Sahoo (8] used the following
functional equation

flz1+ v, 22 + 32) + f(z1 — 31, 22) + fZ1, T2 — Y2)
= flz1—y1,22 - y2) + fl@1 +y1.22) + (21,22 + 12)

for all z;,x2,¥1,y2 € R. In the present paper we solve the above functional
equation on groups without any regularity assumption about f. We shall
not assurne the group to be abelian, so we write the above equation as

Flziyn, zaye) + flzayr Y z2) + flz, 2203 )
(1) = flzwrt ooy ) + F(zmmn, 22) + Fz1, T292)
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for all z1,z2,y1,¥2 € G. Throughout this paper, C will denote the set of
complex numbers.

This paper is organized as follows. In Section 2, we give some preliminary
results that will be used in solving the functional equation (1). In Section
3, we present the general solution of (1). In Section 4, we prove the Hyers-
Ulam stability of the functional equations (2) and (3), and then apply these
results to prove the stability of the functional equation (1).

2. Some preliminary results

The following lemma was given by Aczel, Chung and Ng [1] and can also
be obtained from Chung, Ebanks, Ng and Sahoo [2].

LEMMA 1. Let G be a group in which x> = y has a solution for all
2,y € G. The general solution f : G — C of the functional equation
(2) flay) + fley ) =2f(z) (z,9€G)
satisfying also
flzy) = flyz) (z.y€G)

f(CE) = (,'b(.’L‘) +a,
where a € C is an arbitrary constant and ¢ an arbitrary homomorphism of
G into the additive group (C,+) of C.

is given by

Next, we generalize the above lemma. In fact, this lemma can also be
deduced from Chung, Ebanks, Ng and Sahoo [2]. However, we give a short
proof for the sake of completeness.

LEMMA 2. Let G be a group in which 22 = y has a solution for all
z,y € G. The general solution, f1, fa, f3: G — C, of

(3) Alzy) + faolzy™) = falz)  (zy€G)
satisfying also
(4) hHzy) = filyz), falzy) = folyz) (T, €G)

are given by

(5) filz)=9¢(2)+a, folz)=¢(x)+b, falz)=2¢(z) +a+b,

where a,b € C are arbitrary constants and ¢ : G — C is a solution of

(6) ¢(zy) = ¢(=) + oly)  (z,y€G)
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Proof. Tt is obvious that (5) with (6) satisfies (3) and (4). In order to
prove the converse, we first replace y by y~! in (3) to obtain

(7) filzy™) + folzy) = fa(z).
Setting y = e (the identity of G) in (7), we get
(8) fi(z) + falz) = fa(z).

Adding (3) and (7) and then using (8), we have

9)  Aly) + faley) + filey™) + faley™) = 2(f1(2) + falz))-
Using Lemma 1, from (9) and (4} we obtain

(10) ' fi®) + fa(z) = 2() + a+b.
Subtracting (7) from (3), we get

filzy) — falzy) = filzy™") — falzy™)
for all z,y € . Hence

(1) file) - fole) =a b,
From (10), (11) and (8) we obtain (5). This completes the proof of the
lemma. O

3. General solutions of Eq. (1)

THEOREM 1. Let G be a group in which z? = y has a solution for all
z,y € G. The general solution f : G* — C of the functional equation (1Y
satisfying
(12) Flxiy,z2) = f(y1z1,29) and f(z1, Tage) = (21, y22)
for all x1,22,41,y2 € G, is given by
(13) f(z1,22) = Az, 23) 4+ a(z1) + B(z2),

where o, 3 : G — C are arbitrary functions satisfying oz 1z2) = a(zaz)
and 3(x1z2) = B(zaz1) for all 21,29 € G, and A : G? — C is additive in
each variable.

Proof. 1t is eagy to check that (13) satisfies (1) and (12). In order to
prove the converse, we rewrite (1) as

(14)  flzayr, xay2) — flzayn, w2) — (FleayrHo2ays ') — flzyr ' 2))
= f(:cl, ﬂ?gyz) - f(3713$2y2_1)
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and define F; : G* — C (i = 1,2,3) by

(15) Fi(z1,%2,y2) == flz1, T212) — f(21,T2),
(16) Fa(x1, 22, ¥2) == ~f{z1, 2295 ) + f(z1.%2),
(17) F3(z1,%2,y2) = (21, T2y2) — f(z1, 2205 )

The equation (14) can be written as
Fi(ziy, 22, 92) + Fa(zyy 1, 22, 1) = Fa(1, 22, 32)-
From (12), (15) and (16), we get
Fi(zign, w2, 32) = Fi(hz, 22, 12),
Fy(z1y1, 72, ¥2) = Fa(nni 21, 22, 42)
for z1,2,y1,¥2 € G. So by Lemma 2, (15) and (16) we get

(18) [z, 22y2) — f(21,22) = $1(x1, T2, ¥2) + b(x2, Y2)
and
(19) fle1,22y3 1) — flz1,72)

= —¢i(z1, 22,32} + alz2, ¥2) — blz2, y2),
where ¢1(x1,x2, y2) satisfies
P1(z1y1, T2, 92) = $1(Z1, T2, ¥2) + b1 (y1, T2, Y2)-
Adding (18) and (20) we get

(20) Flai, zay2) + f(z1, 2255 1) — 2f (21, 72) = alz2, y2)-
Setting z; = € in (20) we have
(21) a(za, y2) = Br(Tay2) + Pi(zavy ') — 2B1(x2),

where fi(zs) := f(e,x2). Further, by (12), we also have [i(z2y2) =
B1(y2z2). Substituting (21) into (20), we get

F(x1, z2y2) + Fl21, 22y5 1) = 2F(x1, 72),

where F(z1,72) := f(z1,%2) — Bi1(ze) satisfies F(z,zay2) = F(21, y222).
By Lemma 1, we obtain

F(z1,72) = ¢o(z1, 22} + az1),
that is
(22) f(z1,29) = da(z1,22) + az1) + Bi(x2),
where ¢2(x1,x2) satisfies
(23) pa(z1, T2y2) = da(w1, T2) + $2(21,92)-
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Since f satisfies (12), using (22) we obtain
(24) ¢2(z191, T2) + alzrin) = ¢2(1171, 72) + a(yiz1)
for all 1,1, z2 € G. Replacing z2 by zoys in (24}, we get
(25) 2191, 22y2) + T191) = D2 (9121, T2Y2) + (1 21).
Hence from (23) and (25), we see that
$2(z191, T2} + d2(z191, 42) + a(z191)

= ¢2(nT1,%2) + d2(3171, 42) + algnzr)-

Thus the last equation together with (24) yields

(26) $o(z1y1, y2) = d2(y171, y2)

for all z1,y1,y2 € G. From (24) and (26), we see that a(z;z2)} = a(zz;)
for all 1,22 € G. Substituting (22} into (1) and using (23), we get

(27) ba(z1yn, v2) + d2(z1vy L, v2) = 2¢2(21, 12).
From Lemma 1, (27) and (26), we get

(28) $a(z1, 72) = A(z1,22) + Ba(22),
where A : G? — C satisfies

(29) A(z1y1, 22) = Alz1, 22) + A1, 72)-
Rewriting (28), we have

(30) A(z1,22) = ¢2(z1, 32) ~ fa(z2)-
Using (30) in (29), we obtain

(31) $2(z1y1, T2) = da(z1, 72) + P2(y1, T2) — Bo(z2).
Replacing x1 by x1y: in (23) and using (31), we see that
(32) Ba(z2y2) = Ba(x2) + Baly2)-

From (23), (30) and (32), we obtain
A(z1, T2y2) = A(T1,72) + A(Z1,92)-
Putting (28) into (22), we get
f(@1,22) = Alz1,22) + alz1) + B(x2),

where 3(z2) = B1{z2) + B2{x2) which proves (13). It is easy to check that
G satisfies B(z1z2) = B(zaz1) for all z;,z2 € G. This concludes the proof
of the theorem. O

REMARK 1. Theorem 1 also remains true if C is replaced by a 2-
cancellative abelian group H.
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4, Stability results

In this section, we first prove the Hyers-Ulam stability of the functional
equations (2) and (3) and apply these results to the proof of the Hyers-
Ulam stability of the equation (1). Throughout this section, we assume G
to be an abelian group.

LEMMA 3. Let G be an abelian group. If a function f : G — C satisfies
the functional inequality
(33) [flzy) + flay™ ) —2f(z)}) <& (a,y€G)
for some given é > 0, then there exist an arbitrary constant a € C and a
group homomorphism ¢ of G into the additive group (C, +) of C such that

. If(z) — d(z) —a] < 26
for all z in G.

Proof. By e we will denote the unit element of G. If we define p(z) =
f(x) — f(e), then ¢(e) = 0. From (33) we have

(34) lo(zy) + o(zy™!) —20(z)} < & (z,y€G).
We put y = z in (34) to get

(35) lp(z?) —20(z)] < & (z€G).
Substituting £~y ~! for y in (34), we have

(36) le™") + pla?y) — 20(z)| < & (z,y€G).
By (35) and (36), we obtain

(37) lp(y™") + w(e®y) — ()]

< Iso( Y+ o(e?y) - 20(2)| + [2¢0(z) — (2?)]
< 26 (z,y € G).
If we put © = ¥~ and v = z?y in (37), then we have
lo(u) + olv) —p(uv)] < 26 (4,0 €G).
By a theorem of Ritz [9] (or see also Hyers and Rassias [6], Forti (4], Jung

[7Ti or Hyers, Isac and Rassias [5]), there exists a group homomorphism ¢
of G into the additive group (C,+) of C such that

o@) — d(x)] < % (z€G),
and hence
|f(z) —¢(z) —a| < 28 (z€@),
where a = f(e). O
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LEMMA 4. Let G be an abelian group in which x* = y has a solution
for all z,y € G. If a function f : G — C satisfies the functional inequality

(38) |filzy) + falzy™) - falz)] < & (z,yeG)

for some & > 0, then there exist constants a,b € C and a group homomor-
phism ¢ : G — (C, +) such that

|fi(z) — ¢(z) —a| < 56,
| fa(z) — ¢(x) —b] < B4,
|fa(z) — 2¢(z) —a— D] < 118

forall z € G.

Proof. If we replace y by y~! in (38), then we have

(39) |fi(zy™") + folay) - fa(z)] < 6.
Put y = e in {38) to get
(40) |fa(z) + falz) — f3(z)| < 6.

This inequality, together with (38) and (39), yields

|fi(zy) + falay) + filzy™) + falzy™) — 2f1(z) — 2fa(2)]
< |filey) + folay™) — fa(@)| + |Aley™") + falzy) — fa()]
+ 2|f3(z) = fi(z) — fa(=)]
< 44.
By Lemma 3, we can conclude that there exists a group homomorphism
¢ : G — (C,+) such that
(41) |f1(z) + fa(2) — 2¢(z) — frle) — fale)| < 86
for any z in G. By (38) and (39), we get
\Fi(zy) — faloy) — fi{ey™") + falzy™)]

< filzy) + ey ™) - f@)] +1f3(2) - fulzy™) — f(zy)]
26.

(A

Putting y = z in the above inequality, we obtain

|f1(2?) — fa(a?) — file) + fale)] < 26.

Since the equation z? = ¥ is solvable for all  and y in G, the last inequality
can be rewritten as

(42) |fi(z) — fa(z) — file) + fale)| < 26
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for each z € G. It then follows from (41) and (42) that
21fi(z) ~ ¢(z) — frle)]
< filz) + falz) — 28(z) — fi(e) — fale)l
+ [f1(=z) — falx) — file) + fa(e)l

< 104,
that is,
(43) |f1(z) — é(z) — fule)] < 56
for all x € G. Analogously, we have
(44) |f2(z) — ¢(z) ~ fale)| < 56

By (40), (43) and (44), we see
|f3(z) — 2¢(z) — fi(e) — fale)l
< |fs(z) — filz) — f2(2)] + [ frlz) — ¢(z) — file)l

+ | fa(z) — ¢(z) - fa(e)]
< 114

which completes the proof. ]

We.are now ready to prove the main theorem of this section concerning
the Hyers-Ulam stability of the functional equation (1).

THEOREM 2. Let G be an abelian group in which x? = y has a solution
for all z,y € G. If a function f : G? — C satisfies the functional inequality

45)  |f(@iyn, ay2) + fleyr @) + Flz, 220 ")
— flmr 2ousY) = fl@ay, x2) — fm1,2282)] < 6

for some § > 0 and for all £1,y1,%2,¥2 € G, then there exist arbitrary
functions a, B : G — C and A : G? — C additive in each variable such that

(46) |f (21, 22) — A1, 22) — a(zy) — Blz)| < 149826
for all z,,z3 € G.

Proof. Define F; : G* —» C (i = 1,2,3) by (15), (16) and (17). Then,
the inequality (45) can be written as

|Fi(z191, T2, 2) + Fa(zay1 ', 22, 2) — Fa(zy,22,32)| < 6

for any z;,41,Z2,y2 € G. According to Lemma 4, by considering {15), (16)
and (17), the last inequality implies that there exists a function ¢; : G —
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C such that
d1(z131, T2, 42) = (21, T2, ¥2) + H1(y1, T2, y2),

(47) |f($1,ﬂ72y2) - f(-rhmZ) - ¢1($1,.’E2, y2) - b($23y2)| < 56

and

(48) |f(z1, 2253 ") — F(z1, 72) + $1(21, B2, y2) — a2, y2) + b2, y2)| < 56
for all z1,31,%2,y2 € G. Combining (47) and (48), we get

(49) [ (@1, ay2) + flx1, 2295 ) — 2f (21, 22) — alze, 32)| < 106

for any x1,z2,y2 € G. Putting z1 = e and setting 3 (z2) = f(e, z2) in (49)

yield

(50) la(x2, y2) — Br(z2y2) — Br(zays ') + 2B1(z2)| < 106

By defining F(x),z9) = f(z1,22) — Bi(zg), it follows from (49) and (50)

that ‘
|F(z1,22y2) + F(z1, 2205 ') — 2F (1, 72)| < 208

for any 1, 2, y2 € G. Hence, by Lemma 3, there exist an arbitrary function

«: G — C and a function ¢ : G? — C such that

(51) do(x1, T2y2) = (21, m2) + d2(x1, ¥2)
and
(52) | F (@1, z2) = alzr, 22) — a(z1) — Gulz2)| < 408

for all z1, z2,y2 € G. Using (45), (51) and (52), we obtain

| — 2131, 92) — dalmryr ' v2) + 260(z1, 32)|

< | f(zryr, xaye) — da(212n, 22w2) — alz11n) — Bi(zays)]
+ |Flzmyyt x2) — ooyt 22) — alz1yi?) — Bul(za)|
+ |f(z1, 2255 1) — Pa(m1, Tays Y) ~ 1) — Gulzayz V)|
+ | = fley L wowy ') + ey L zoys ) + iy ) + Bi(zoys )
+ | = f(@y1, Z2) + da(z1y1, 72) + (11) + Ba (T2)|
+ | = f(z1, 22y2) + da(z1, Z2y2) + az1) + B1(Z2ys)|
+ | = fl@w, zay2) — fleyrh z2) — fln, 2207 ")

+ floyrt zoyy V) + flzay, z2) + @1, z232)]
< 2416

By Lemma 3 again, there exist an arbitrary function 8, : G — C and a
function A; : G2 — C such that

(63) Ai(z1y1, x2) = Ar(z1, 22) + A1 (y1, z2)
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and

(54) |p2(21, T2) — Ar(z1,72) — B2(m2)| < 4826

for all zy,%1,z2 € G. By considering (53), it follows from (54) that
(55) |$2(z131, 72) — da(z1, %2} — d2(y1, 72} + B2(22}|

< la(zam, z2) — Ar(2131, 72} — Balw2)|
+ | — da(z1, 22) + Ar(z1, 72) + B2(72)]
+ | = @2(1, 22) + A1 (y1, 22) + Bo(z2)|
< 14464.

By replacing x2 by y» respectively by zays in (55) and combining (55) and
the resulting inequalities and then considering (51), we have

|B2(22) + Balye) — Bolzaya)| < 43386

for any z2,y2 € G. By a theorem of Forti [3] or Ritz [9] (see also Forti [4],
Hyers and Isac and Rassias [5|, Hyers and Rassias [6] and Jung (7]}, there
exists an additive function A, : G — € such that

(56) |B2(m2) ~ Az(x2)| < 43389
for all zg € G. By (54) and (56), we have
(57) |pa(z1, z2) — A1(z1,x2) — Ap(za)] < 48200

for any z1,z2 € G. By replacing z3 by y2 and by zoy» separately in (57),
and combining (57) and the resulting inequalities, and then considering
(51) and the fact that A, is additive, we get

|A1{z1, zayo) — Ar(z1, 22) — Asr(zy,92)| < 144605

for any z3, Zo, y2 € G. According to a theorem of Forti [3] or Réitz [9] again,
if we define a function 4 : G2 — C by

Ay, @2) = lim 27" Ay (21,23")

for any z1,z2 € G, then A is additive in the second variable and also in
the first variable, since A; has this property (see (53)). Furthermore,

(58) |A1($1,£L‘2) —*A(:L‘l,:l’,‘z)l S 1446068

for all 1,22 € G. By (52), (54), (58) and putting S{zg) = F1(z2) + Ba(x2),
we see that the inequality (46) holds true. O
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