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CONDITIONAL INDEPENDENCE AND TENSOR
PRODUCTS OF CERTAIN HILBERT L*-MODULES

THOMAS HOOVER AND ALAN LAMBERT

ABSTRACT, For independent o-algebras A and B on X, L%(X, AV B),
L*(X x X, A x B), and the Hilbert space tensor product L*{(X,A) ®
L?(X, B) are isomorphic. In this note, we show that various Hilbert C™-
algebra tensor products provide the analogous roles when independence
is weakened to conditional independence.

1. Introduction

Suppose that (X, F, i) is a probability space, and A and B are indepen-
dent sub sigma algebras of . One can then show by standard rectangle
approximation that L2(X x X, Ax B, u x u) and L*(X, AV B, 1) are unitar-
ily equivalent via a measure algebra isomorphism induced unitary operator.
Moreover, there is a natural equivalence of these spaces with the (unique)
Hilbert space tensor product L?(X, A, i) ritsers L2 (X,B,p). In this note,
we consider analogous situations for the case that A and B are assumed
only to be conditionally independent given A N B. The role of L? spaces is
taken by certain Hilbert C*-modules. As conditional independence may be
easily described in terms of conditional expectations, and these conditional
expectations are the basic building blocks of the Hilbert modules being in-
vestigated, this seems like the proper setting for this analysis. Moreover,
there is a strong connection between the von Neumann algebra generated
by the composition operator determined by a measurable transformation of
X, and a pair of conditionally independent sigmal algebras. This relation
is examined briefly at the end of this note.
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2. Notation and conventions

e Let (X, F, ) be a probability space. Upper case script letters A, B,
C, etc. will generally be used to name sub sigma algebras of F. Then AV B
represents the smallest sigma algebra in F which contains both A and B.

e For § a collection of sets in F, o(S) is the smallest sigma algebra
containing all the sets in S.

e For a sigma algebra A C F, EA is the conditional expectation opera-
tor. We will only be concerned with E acting on L2(F), so that for each
f € L*(F), EAf is the unique function in L?(A4) satisfying [, EAfdu =
f 4 fdu for every A € A. Tt is worth noting that EA is the orthogonal
projection onto L2(X, A, ) and that EAL®(F) = L (A).

¢ f* means f, the complex conjugate of f.

3. Tensor products of Hilbert C* modules

Chapter 4 of E. C. Lance’s text [4] provides a detailed treatment of the
general theory of Hilbert C* module tensor products. We will be concerned
here with certain specific examples. In general, when applied to vector
spaces, ® refers only to the algebraic tensor product (i.e., tensor product
over C). Recall that if £ and F are Hilbert )} modules, where ) is a
C* algebra, and ¢ is a *homomorphism from Y to L£{F) (the space of
adjointable maps on F) then the quotient of £ ® F by the linear span of

{e@d)(f)—ye® f:ec&, fe Fyel}

is a Y valued inner product space, where the inner product is given on
elementary tensors by

{e1® f1, e2 ® fo) = (f1, dl{e1, e2)e)(f2)) .
The completion of this space is the interior tensor product of £ and F with
respect to ¢.  This space is a Hilbert ) module. We will only be con-
cerned with the case that ¢ is the left representation of YV as multiplication
operators on JF.
With £, F, and Y as above, we may also form the exterior tensor product
of £ and F. This inner product is given on elementary tensors by

{e1® f1,e2 @ f2) = (e1,ea)e ® (f, fa) -
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The completion of this space is then a Hilbert Y®Y module (in this context
YV ® Y is the spatial, or minimal C* algebra tensor product.).

The specific tensor products encountered in this note are:

® : The interior tensor product ff@(::) of two Hilbert L>°(C) modules,
with respect to left multiplication.

#H

® : The interior tensor product ro@excy of two Hilbert L°(C x €)
modules, with respect to left muitiplication. '

e

® : The exterior tensor product LW(C)ng(m of two Hilbert L*(C)
modules.

4. Conditional independence

Chapter 2 of M. M. Rao’s text [5] provides a detailed treatment of the
material herein outlined. Given three sub sigma algebras 7, K, and £ of F,
J and K are conditionally independent given L ifV.J € 7, EXVLy ;= BLy .
This may be restated in operator form as EXVEEY = EXEJ . In the special
case of C = AN B: A and B are conditionally independent given C if and
only if EA E# = EC; equivalently B4 E® = EB EA,

We will employ the notation “ A and B are ¢i | C ” for conditional
independence. We will also make repeated use of the following:

LeMMA 0. If a is A measurable and b is B measurable, and A and B
are ci | C, then

E€(ab) = (EBa) - (E*b) = (E€a) - (Eb).

Proof. E€(ab) = EAEB(ab) = EA[(EBa)b]
= EA[(EBEAa)b] = E* [(E*EPa) 0]
= (E*EPa) - (Bb) = (EBE#a) - (Eb)
= (EBa) - (E4b).
On the other hand, EBa = EPEAa = ECa, and similarly E4b = E°b.
|
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5. The Hilbert L®-modules associated with nested sigma alge-
bras

For CCACUF, let

L{C,.A) = {f : f is A measurable and E|f|® € L®};

2 1/2
11l = 1 lLie.a) = IECT f Pllee -

It was shown in 3] that (L (C,A),| |l.) is a Banach space satisfying
L*® (A)CL(C,A)CL?(F). Moreover, L (C, A) is a Hilbert L™ (.4)-module
which is a realization of the localization via EA of L® (F). (see [4] for a
discussion of Hilbert C* modules in general and localization in particular.)

Let A and B be sub sigma algebras of F, and let C = ANB. Assume
A and B are ¢i|[C . We note that in the case that C is the trivial algebra
consisting of all F-sets of measure 0 or 1, then conditional independence
given C reduces to the probabilistic concept of independence. Also,
Since A and B are conditionally independent given C, for ac L? (A) and
be L? (B),

(LEMMA 0) E° (|ab]?) = (E€)af?) - (E°|b?)
S0
L(C,A)-L(C,B)yCL(C,F).
Moreover, L (C, A) is a complemented Hilbert L> (C) submodule of (C, F)
because the projection E* is an adjointable operator on L (C, F). Consider
the interior tensor product ®' of L (C,.4) and L (C, B) (with respect to the
representation of L™ (C) as left multiplication on L (C, B)) where A and B
are ci|C:
(a1 ® b1, a2 @ by) = (b, (a1, a2}, - bo)
= EC(b} - (a1, a2)L - be) = E€ (b} - E€ (a} - a2) - ba)
= EC(a} - ay) - BC (4] - ba).
As noted in Lemma 0, since A and B are ci|C, we have
(1) {a1 @b1,aa ®by) = EC{(a}-az b} by)
= E°((a1h1)" - (aghs)).

In order to form the interior tensor product, we must consider the subspace
N of the algebraic tensor product generated by all elements of the form
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(ca) ® b— a® {cb) and take the completion of (L (C,.A) ® L (C, B)}/N with
respect to the norm determined by Eq. 1. This space is denoted L (C, AR
L(C,B) .

THEOREM 1. L(C,A) ® L(C,B) and L(C, A V B) are isometrically iso-
morphic as Hilbert L°°-modules.

Proof. For finite sequences {a;}and {b;}in L (C, A) and L {C, B}, respec-
tively, we have (via Eq. 1)

(Zaj - by, Ba; - bi)pc,avey = Z(ai -biy a5 - bi)L(c,avB)
i,j

> EC((ai bi)" - (aj - b))

1.7

== Z(ai ®f bi, aj ®.r bj)
i
= (Ea,, ®! bi, Eai @’ bi)]L(C,,A)@'L(C,B)'
This insures that the map S:Xa; ® b — Za; - b; extends to an L™ (C)-
module isometry from L (C,.A) & L (C, B) onto L (C, AV B). To see that S
is in fact an adjointable map, note that for ¢; € L (C, A)and b; € L (C, B},
i =1,2we have

<a1 b1, S (‘” ® b2) >1L(C,AVB) = o -buaz-balrc.a
= Ef(alas - biby) = EC (a}az) EF (biby)
= {a1 ® b1, a2 ® b2))(c,avB) i

so indeed, S is adjointable, and $* (= S!) is given (on a fundamental set)
by S*(a-b) = a®'b. O

It was shown in [2] that L(C, A) = L%(X, A, p) if and only if C is gen-
erated by a finite partition. Indeed, if C = ¢ (C; : 1 < i <n), where

{C1,---,Cn} is a measurable partition of X, then
1
2 _ 2 .
S0

1
2 _ - 2
1918 = sy L V7P
Thus the L2(.4) and L(C, .A) norms are equivalent. If C is the trivial sigma
algebra o(X), then E€ is the unconditional expectation and A and B are
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actually independent. In this case, of course the L? and L norms are
identical. The previous few lines may be formalized as follows.

COROLLARY 2. Suppose that A and B are cilC where C is finitely
generated. Then L2(X, A, u)® I*(X,B,u) = L*(X, AV B,p). IfC is
trivial then L?(X, A, 1) Hitgert L2 (X,B, 1) = L*(X, AV B, 1), where Hisert
denotes the {unique) Hilbert space tensor product.

REMARK. If in fact C = o{(Cy,Co, -+ ,Cy), where the Ci’s are pair-
wise disjoint then we may identify L°°(C) with C™ via the isomorphism

n
(M, ", An) = > A Xx¢;- We can then view L (C,A) and L(C,B) as
i=1
Hilbert C™*-modules.

Suppose for the moment that A4 and B have intersection C but are not
necessarily ci|C. It is easy to see that if a is A-measurable and b is B
-measurable and we define o/(z,y) = a(x) and b (z,y) = b(y), and let
F=da-b" : X x X — C, then for any sigma algebras P and Q contained
in A and B, respectively,

(EP*QF)(z,y) = (EPa)(z) - (E°)(y).

LEMMA 3. A xC and C x B are ci|C x C with respect to the measure
space (X x X, A x B,y x u).

Proof. Let a, b, and F be as in the remark immediately preceding the
statement of the lemma. Then

EBF(z,y) = (Ea)(x) - (EPb)(y) = (ECa)(x) - b(y).
We may then apply the same reasoning to deduce that
EAXC_(ECXBF) (z,y) = (E’A (Eca)) (z) - (Ecb) (y)
= (ECq)(z)- (ECb)(y)  (sinceEAEC = EF)
= (ECXCF) (z,y)-
Since the set of such F’s generates all 4 X B measurable functions, we see

that EAXCECXB = ECXC. Byt (A x C)N(C x B) =C x €, which guarantees
that (A x C) and (C x B) are ci| C x C. o

COROLLARY 4. Let ANB = C (no assumption of conditional independ-
ence). Then L(C x C,Ax C) ®" L{C x C,C x B) and L (C x C,.A xB) are
isometrically isomorphic as Hilbert L>(C x C)-modules.
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Proof. By Lemma 3 (A x C) and (C x B) are ci| C x C, so that Theorem
1 applies. |

When the hypothesis for Corollary 4 is strengthened so that .4 and B are
¢i|C, then we have another representation of L (C x C, A x B), as presented
later in Theorem 3.

We now examine the exterior tensor product L (C, A) @ L (C, B).
We continue to use the notational conventions f (x,y) = f(x), f (z,y) =
f{y), with the obvious interpretations of 8" and 8" for a set S of functions
of one variable. As we are using the minimal C* algebra norm on L* (C) ®
L% (C), we identify this space as L™ (C x C).

THEOREM 5. Suppose that A and B are sigma sub algebras of F with

i

intersection C. Then L(C, A)® L(C,B) and L(CxC, AxB) are isometrically
isomorphic as Hilbert L>(C)® L°°(C)-modules.

Proof. The inner product for L(C, A} ®" L(C, B) is given on elementary
tensors by

(a1 @b1,82@ba) = {a1,a2)L @ {b1, b2,
= Ef(a}a) ® E€ (b} by),

from which it follows that for finite sequences {a; } and {b; },

(Da; @by, Ta; @bs) = ) EC(af a;) ® EC (b} by).

1,3

Thus

2
”2 a; & bi“lL(C,.A)@'”]L(C,B) =

3 (e} ;) ® EC(5; b))
4J

this last norm being computed with respect to the minimal C* algebra
tensor product completion of L® (C) @ L™ (C).
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Now,

(Zaj - b}, Daj - b))L(exe, exb)

= ZECXC( bﬂ)* ' bﬂ)
- )

1.J
= D E°(at-a) EO(5-b)
v

(the last equality following from the remark preceding Lemma 3)

= Y EC(a} - a5) ECXC (b} - by)".
i’j
This is precisely the image of Z EC (a} a;) ® E° (b} b;) in the represen-

tation of (the minimal C* algebra tensor product completion of) L>® (C)®
L (C) as L™ (C x C). O

6. An application to composition operators

Starting with the probability space (X, F, u), suppose that T is a map-
ping from X to X such that 771F C Fand puoT7! <« p. If gf*ﬁ—_l €
L, then the composition operator C given by the formula Cf = foT is
a bounded linear operator on L2(X,F,u). (In [6], R. K. Singh and J. S.
Manhas give many of the basic properties of such operators). In [1], the
von Neumann algebra, W, generated by C was studied. In particular, the
following results were established:

PRrROPOSITION. Let W be the von Neumann algebra generated by C.
Then

i) there is a sigma algebra M in F such that [W1} = L3(M) ;
ii) for A = {F € F: T-1F = F}, W1} = L*}(A4);
iiiy EMEA = EA EM ; and
iv) EMVA s a central projection of W.
v) W is a factor if and only f MV A" = F and M N A’ is the trivial
sigina algebra.
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(The square brackets above indicate closed linear span in L2(X,F,p) ).

Let C = MnN A’ . Then (iii) above shows that M and A’ are ci|C. Thus
the tensor product results apply (where = is used for Hilbert C'+-module
equivalence): '

i) L, M) L[, A)=L({C, MV A
i) L(CxC,MxC)R'LECxC,CxA)=LIECxC, MxA)
i) L(C, M) ®" L(C, &) = L(C x ¢, M x A).

Now the composition operator C actually leaves L(C, M) and L(C, A")
invariant; indeed, it is the identity operator on the latter. Consider the ten-
sor product “equation” (i) above, and let R be the Hilbert L*°(C)-module
isomorphism implementing the “equality.” Define S on L(C, M) ®&'L(C, A")
by (extending the elementary tensor map) S(m®a') = moT ® a’. Then
it is clear that RS = CR, and similar statements may be made for (i)
and (iii). We now show that in the case that W is a factor, these three
module identifications coalesce and provide a special representation of T.
In this case, we have C being the trivial sigma algebra, so that L%(C),
L= (C x C), and L* (C)® L (C) “are” C. Then (i) reduces to the identi-
fication of L? (M) srivgere L2(A') with L2 (M V A"); while (jii) identifies this
same tensor product with L? (M x A"). The identification of L? (M x A')
and L? (M V .A") may be realized at the set level by the mapping xarxar
— X mna’, and verifying (via independence} that this extends in the proper
way to a unitary equivalence. This unitary equivalence then establishes a
model for all composition operators generating factors. We note that when
W is a factor, C|;2(M) is irreducible, so that part b of the following result
is truly a converse to part a.

THEOREM. a) Suppose that W is a factor (as above). Define S on X x X
by S(x,y) = (T'z,y). Then the composition operator Cs on L*(X x X, M
x A', ju x ) is unitarily equivalent to Cr on L*(X, F, p).

b) Suppose that T, is a transformation such that its corresponding com-
position operator Cr, on L2(X,, Fo, i) is irreducible (so that Wr, is the
ring of all operators on L*(X,, Fy, pto)). Let (X1, F1,p11) be a probability
space. Define T on X, x X, by T(z,y) = (Toz,y). Then Wr is a factor.
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Proof. Part a follows directly from the comments preceding the state-
ment under consideration. As for part b, it is easy to see that the corre-
sponding Mt and A% sigma subalgebras of F, x F) are given by

Mp=T,xF eand Ap=F,xT,

where the 7;’s are the appropriate trivial sub sigma algebras. It then follows
that

MTV.Afr= FoxFr and MTNA; =7 x T,
this last algebra being the trivial algebra in F, x 7. Thus Wr is a factor.
|
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