SPACE-LIKE SUBMANIFOLDS WITH CONSTANT SCALAR CURVATURE IN THE DE SITTER SPACES

LIU XIMIN

ABSTRACT. Let M^n be a space-like submanifold in a de Sitter space $M_p^{n+p}(c)$ with constant scalar curvature. We firstly extend Cheng-Yau's technique to higher codimensional cases. Then we study the rigidity problem for M^n with parallel normalized mean curvature vector field.

1. Introduction

Let $M_p^{n+p}(c)$ be an (n+p)-dimensional connected semi-Riemannian manifold of constant curvature c whose index is p. It is called an indefinite space form of index p and simply a space form when p=0. If c>0, we call it as a de Sitter space of index p. Akutagawa [3] and Ramanathan [11] investigated space-like hypersurfaces in a de Sitter space and proved independently that a complete space-like hypersurface in a de Sitter space with constant mean curvature is totally umbilical if the mean curvature H satisfies $H^2 \leq c$ when n=2 and $n^2H^2 < 4(n-1)c$ when $n \geq 3$. Later, Cheng [4] generalized this result to general submanifolds in a de Sitter space.

To our best knowledge, there are almost no intrinsic rigidity results for the space-like submanifolds with constant scalar curvature in a de Sitter space until Zheng [15] obtained the following result.

THEOREM. Let M^n be an n-dimensional compact space-like hypersurface in $M_1^{n+1}(c)$ with constant scalar curvature. If M^n satisfies

- (1) K(M) > 0,
- $(2) Ric(M) \leq (n-1)c,$
- (3) R < c,

where R is the normalized scalar curvature of M^n , then M^n is totally umbilical.

Received February 23, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 53C40, 53C42, 53C50.

Key words and phrases: space-like submanifold, scalar curvature, normalized mean curvature vector field.

This project is supported in part by the National Science Foundation of China.

In [5], Cheng-Yau firstly studied the rigidity problem for a hypersurface with constant scalar curvature in a space form by introducing a self-adjoint second order differential operator (See Theorems 1 and 2 in [5]). They proved that, for an M^n in $M^{n+1}(c)$, if R is constant and $R \geq c$, then $|\nabla \sigma|^2 \geq n^2 |\nabla H|^2$ where σ and H denote the second fundamental form and the length of the mean curvature vector field of M^n respectively. By using Cheng-Yau's technique, Li [7] [8] studied the pinching problem and also proved some global rigidity theorems for hypersurfaces with constant scalar curvature.

In the present paper, we would like extend Cheng-Yau's technique to higher codimensional cases and use this result to study the rigidity problem for space-like submanifolds in a de Sitter space with constant scalar curvature.

2. Preliminaries

Let $M_p^{n+p}(c)$ be an (n+p)-dimensional semi-Riemannian manifold of constant curvature c whose index is p. Let M^n be an n-dimensional Riemannian manifold immersed in $M_p^{n+p}(c)$. As the semi-Riemannian metric of $M_p^{n+p}(c)$ induces the Riemannian metric of M^n , M^n is called a spacelike submanifold. We choose a local field of semi-Riemannian orthonormal frames e_1, \ldots, e_{n+p} in $M_p^{n+p}(c)$ such that at each point of M^n , e_1, \ldots, e_n span the tangent space of M^n and form an orthonormal frame there. We use the following convention on the range of indices:

$$1 \le A, B, C, \ldots \le n+p; \quad 1 \le i, j, k, \ldots \le n; \quad n+1 \le \alpha, \beta, \gamma \le n+p.$$

Let $\omega_1, \ldots, \omega_{n+p}$ be its dual frame field so that the semi-Riemannian metric of $M_p^{n+p}(c)$ is given by $d\bar{s}^2 = \sum_i \omega_i^2 - \sum_\alpha \omega_\alpha^2 = \sum_A \epsilon_A \omega_A^2$, where $\epsilon_i = 1$ and $\epsilon_\alpha = -1$. Then the structure equations of $M_p^{n+p}(c)$ are given by

(1)
$$d\omega_A = \sum_B \epsilon_B \omega_{AB} \wedge \omega_B, \quad \omega_{AB} + \omega_{BA} = 0,$$

(2)
$$d\omega_{AB} = \sum_{C} \epsilon_{C} \omega_{AC} \wedge \omega_{CB} - \frac{1}{2} \sum_{C,D} K_{ABCD} \omega_{C} \wedge \omega_{D},$$

(3)
$$K_{ABCD} = c \epsilon_A \epsilon_B (\delta_{AC} \delta_{BD} - \delta_{AD} \delta_{BC}).$$

Restrict these form to M^n , we have

(4)
$$\omega_{\alpha} = 0, \quad n+1 \le \alpha \le n+p,$$

the Riemannian metric of M^n is written as $ds^2 = \sum_i \omega_i^2$. From Cartan's lemma we can write

(5)
$$\omega_{\alpha i} = \sum_{j} h_{ij}^{\alpha} \omega_{j}, \quad h_{ij}^{\alpha} = h_{ji}^{\alpha}.$$

From these formulas, we obtain the structure equations of M^n :

(6)
$$d\omega_i = \sum_j \omega_{ij} \wedge \omega_j, \quad \omega_{ij} + \omega_{ji} = 0,$$

(7)
$$d\omega_{ij} = \sum_{k} \omega_{ik} \wedge \omega_{kj} - \frac{1}{2} \sum_{kl} K_{ijkl} \omega_k \wedge \omega_l,$$

(8)
$$R_{ijkl} = c(\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) - \sum_{\alpha} (h_{ik}^{\alpha}h_{jl}^{\alpha} - h_{il}^{\alpha}h_{jk}^{\alpha}),$$

where R_{ijkl} are the components of the curvature tensor of M^n .

For indefinite Riemannian manifolds in detail, refer to O'Neill [9].

Denote $L_{\alpha}=(h_{ij}^{\alpha})_{n\times n}$ and $H_{\alpha}=(1/n)\sum_{i}h_{ii}^{\alpha}$ for $\alpha=n+1,\cdots,n+p$. Then the mean curvature vector field ξ , the mean curvature H and the square of the length of the second fundamental form S are expressed as

$$\xi = \sum_{\alpha} H_{\alpha} e_{\alpha}, \ H = |\xi|, \ S = \sum_{\alpha,i,j} (h_{ij}^{\alpha})^2,$$

respectively. Moreover, the normal curvature tensor $\{R_{\alpha\beta kl}\}$, the Ricci curvature tensor $\{R_{ik}\}$ and the normalized scalar curvature R are expressed as

$$R_{\alpha\beta kl} = \sum_{m} (h_{km}^{\alpha} h_{ml}^{\beta} - h_{lm}^{\alpha} h_{mk}^{\beta}),$$

$$R_{ik} = (n-1) c \delta_{ik} - n \sum_{\alpha} (H_{\alpha}) h_{ik}^{\alpha} + \sum_{\alpha,j} h_{ij}^{\alpha} h_{jk}^{\alpha},$$

$$(9) \qquad R = c + \frac{1}{n(n-1)} (S - n^{2}H^{2}).$$

Define the first and the second covariant derivatives of $\{h_{ij}^{\alpha}\}$, say $\{h_{ijk}^{\alpha}\}$ and $\{h_{ijkl}^{\alpha}\}$ by

(10)
$$\sum_{k} h_{ijk}^{\alpha} \omega_{k} = dh_{ij}^{\alpha} + \sum_{k} h_{kj}^{\alpha} \omega_{ki} + \sum_{k} h_{ik}^{\alpha} \omega_{kj} + \sum_{\beta} h_{ij}^{\beta} \omega_{\beta\alpha},$$

(11)
$$\sum_{l} h_{ijkl}^{\alpha} \omega_{l} = dh_{ijk}^{\alpha} + \sum_{m} h_{mjk}^{\alpha} \omega_{mi} + \sum_{m} h_{imk}^{\alpha} \omega_{mj} + \sum_{m} h_{ijm}^{\alpha} \omega_{mk} + \sum_{\alpha} h_{ijk}^{\beta} \omega_{\beta\alpha}.$$

Then, by exterior differentiation of (5), we obtain the Codazzi equation

$$h_{ijk}^{\alpha} = h_{ikj}^{\alpha}.$$

It follows from Ricci's identity that

(13)
$$h_{ijkl}^{\alpha} - h_{ijlk}^{\alpha} = \sum_{m} h_{mj}^{\alpha} R_{mikl} + \sum_{m} h_{im}^{\alpha} R_{mjkl} + \sum_{\beta} h_{ij}^{\beta} R_{\beta\alpha kl}.$$

The Laplacian of h_{ij}^{α} is defined by $\Delta h_{ij}^{\alpha} = \sum_{k} h_{ijkk}^{\alpha}$. From (13), we have

$$\begin{split} \Delta h_{ij}^{\alpha} &= n H_{\alpha,ij} + \sum_{k,m} h_{km}^{\alpha} R_{mijk} + \sum_{k,m} h_{im}^{\alpha} R_{mkjk} + \sum_{k,\beta} h_{ik}^{\beta} R_{\beta\alpha jk} \\ &= n H_{\alpha,ij} + n c h_{ij}^{\alpha} - n c H_{\alpha} \delta_{ij} - n \sum_{\beta,m} H_{\beta} h_{im}^{\alpha} h_{mj}^{\beta} + \sum_{\beta} S_{\alpha\beta} h_{ij}^{\beta} \\ &- 2 \sum_{\beta,k,m} h_{ik}^{\beta} h_{km}^{\alpha} h_{mj}^{\beta} + \sum_{m,k,\beta} h_{im}^{\alpha} h_{mk}^{\beta} h_{kj}^{\beta} + \sum_{\beta,k,m} h_{ik}^{\beta} h_{km}^{\beta} h_{mj}^{\alpha}, \end{split}$$

where $S_{\alpha\beta} = \sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta}$ for all α and β . Define $N(A) = \sum_{i,j} a_{ij}^2$ for any real matrix $A = (a_{ij})_{n \times n}$. Then we have

$$\sum_{i,j} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} = n \sum_{i,j} H_{\alpha,ij} h_{ij}^{\alpha} + n c S_{\alpha} - c n^{2} H_{\alpha}^{2} - n \sum_{\beta} H_{\beta} Tr(L_{\alpha}^{2} L_{\beta})
+ \sum_{\beta} S_{\alpha\beta}^{2} + \sum_{\beta} N(L_{\alpha} L_{\beta} - L_{\beta} L_{\alpha}),$$
(14)

where $S_{\alpha} = \sum_{i,j} (h_{ij}^{\alpha})^2$, for every α .

Suppose H > 0 on M^n and choose $e_{n+1} = \xi/H$. Then it follows that

(15)
$$H_{n+1} = H; \quad H_{\alpha} = 0, \qquad \alpha > n+1.$$

From (10) and (15) we can see

(16)
$$H_{n+1,k}\omega_k = dH, \quad H_{\alpha,k}\omega_k = H\omega_{n+1\alpha} \qquad \alpha > n+1.$$

From (11), (15) and (16) we have

(17)
$$H_{n+1,kl} = H_{kl} - \frac{1}{H} \sum_{\beta > n+1} H_{\beta,k} H_{\beta,l},$$

where $dH = \sum_i H_i \omega_i$ and $\nabla H_k = \sum_l H_{kl} \omega_l \equiv dH_k + H_l \omega_{lk}$ for all k.

Using (14) and (17), we have

$$\sum_{i,j} h_{ij}^{n+1} \Delta h_{ij}^{n+1} = n \sum_{i,j} H_{ij} h_{ij}^{n+1} - \frac{n}{H} \sum_{i,j} \sum_{\beta > n+1} H_{\beta,i} H_{\beta,j} h_{ij}^{n+1} + n c S_{n+1} - c n^2 H^2 - n H f_{n+1} + S_{n+1}^2 + \sum_{\beta > n+1} S_{n+1\beta}^2 + \sum_{\beta > n+1} N(L_{n+1} L_{\beta} - L_{\beta} L_{n+1}),$$
(18)

where $f_{n+1} = Tr(L_{n+1})^3$.

M. Okumura [10] established the following lemma (see also [2]).

LEMMA 2.1. Let $\{a_i\}_{i=1}^n$ be a set of real numbers satisfying $\sum_i a_i = 0$, $\sum_i a_i^2 = t^2$, where $t \ge 0$. Then we have

$$-\frac{n-2}{\sqrt{n(n-1)}}t^3 \le \sum_i a_i^3 \le \frac{n-2}{\sqrt{n(n-1)}}t^3,$$

and the equalities hold if and only if at least (n-1) of the a_i are equal.

Denote the eigenvalues of L_{n+1} by $\{\lambda_i\}_{i=1}^n$. Then we have

(19)
$$nH = \sum_{i} \lambda_{i}, \quad S_{n+1} = \sum_{i} \lambda_{i}^{2}, \quad f_{n+1} = \sum_{i} \lambda_{i}^{3}.$$

Set $\bar{L}_{n+1} = L_{n+1} - H I_n$, $\bar{f}_{n+1} = f_{n+1} - 3H S_{n+1} + 2nH^3$, $\bar{S}_{n+1} = S_{n+1} - nH^2$, and $\bar{\lambda}_i = \lambda_i - H$, where I_n denotes the identity matrix of degree n. Then (19) changes into

(20)
$$0 = \sum_{i} \bar{\lambda}_{i}, \quad \bar{S}_{n+1} = \sum_{i} \bar{\lambda}_{i}^{2}, \quad \bar{f}_{n+1} = \sum_{i} \bar{\lambda}_{i}^{3}.$$

By applying Okumura's Lemma to \bar{f}_{n+1} , we have

$$\bar{f}_{n+1} \le \frac{n-2}{\sqrt{n(n-1)}} \bar{S}_{n+1} \sqrt{\bar{S}_{n+1}} \Longleftrightarrow$$

$$f_{n+1} \le 3HS_{n+1} - 2nH^3 + \frac{n-2}{\sqrt{n(n-1)}}\bar{S}_{n+1}\sqrt{\bar{S}_{n+1}}.$$

So we have

(21)
$$n c S_{n+1} - c n^{2} H^{2} - n H f_{n+1} + S_{n+1}^{2}$$

$$\geq \bar{S}_{n+1} \{ n c + \bar{S}_{n+1} - n H^{2} - n (n-2) H \sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}} \}.$$

It follows from (15) that

(22)
$$\sum_{\beta>n+1} S_{n+1\beta}^2 = \sum_{\beta>n+1} \{ \sum_{i,j} (h_{ij}^{n+1} - H\delta_{ij}) h_{ij}^{\beta} \}^2.$$

Denote $S_I = \sum_{\beta > n+1} S_{\beta}$. From (22), we have

(23)
$$\sum_{\beta > n+1} S_{n+1\beta}^2 \le \bar{S}_{n+1} S_I.$$

Let $T = \sum_{i,j} T_{ij} \omega_i \omega_j$ be a symmetric tensor on M^n defined by

(24)
$$T_{ij} = h_{ij}^{n+1} - nH\delta_{ij}.$$

We introduce an operator \square associated to T acting on $f \in C^2(M^n)$ by

$$\Box f = \sum_{i,j} T_{ij} f_{ij} = \sum_{i,j} h_{ij}^{n+1} f_{ij} - nH\Delta f,$$

where Δ is the Laplacian. Since (T_{ij}) is divergence-free, it follows from [5] that the operator \square is self-adjoint relative to the L^2 -inner product of M^n .

Choosing f = H in above expression, we have

(25)
$$\sum_{i,j} h_{ij}^{n+1} H_{ij} = \Box H + nH\Delta H.$$

Denote $\bar{S} = \bar{S}_{n+1} + S_I$. Substituting (21), (23) and (25) into (18), we get

$$\sum_{i,j} h_{ij}^{n+1} \Delta h_{ij}^{n+1} \geq n \Box H + \frac{1}{2} n^2 \Delta (H^2) - n^2 |\nabla H|^2
- \frac{n}{H} \sum_{\beta > n+1} \sum_{i,j} H_{\beta,i} H_{\beta,j} h_{ij}^{n+1}
+ \sum_{\beta > n+1} N(L_{n+1} L_{\beta} - L_{\beta} L_{n+1})
+ \bar{S}_{n+1} \left\{ n \, c - n H^2 + \bar{S}_{n+1} - n(n-2) H \sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}} \right\}.$$
(26)

3. An extension of Cheng-Yau's technique

Cheng-Yau [5] gave a lower estimation for $|\nabla \sigma|^2$, the square of the length of the covariant derivative of σ , which plays an important role in their discussion. They proved that, for a hypersurface in a space form of constant scalar curvature c, if the normalized scalar curvature R is constant and $R \geq c$, then $|\nabla \sigma|^2 \geq n^2 |\nabla H|^2$.

For the space-like submanifolds in a de Sitter space, we can prove the following

THEOREM 3.1. Let M^n be a connected submanifold in $M_p^{n+p}(c)$ with nowhere zero mean curvature H. If R is constant and R < c, then

(27)
$$|\nabla \sigma|^2 = \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 \ge n^2 |\nabla H|^2$$

and the symmetric tensor T defined by (24) is negative semi-definite. Moreover, if the equality in (27) holds on M^n , then H is constant and T is negative definite.

Proof. From (9), we have $n^2H^2 - S = n(n-1)(c-R) > 0$. Taking the covariant derivative on both sides of this equality, we get

$$n^2H H_k = \sum_{i,j,\alpha} h_{ij}^{\alpha} h_{ijk}^{\alpha}, \quad k = 1, \cdots, n.$$

For every k, it follows from Cauchy-Schwarz's inequality that

(28)
$$n^4 H^2 H_k^2 = (\sum_{i,j,\alpha} h_{ij}^{\alpha} h_{ijk}^{\alpha})^2 \le S \sum_{i,j,\alpha} (h_{ijk}^{\alpha})^2,$$

where the equality holds if and only if there exits a real function c_k such that

$$h_{ijk}^{\alpha} = c_k h_{ij}^{\alpha}$$

for all i, j and α . Taking sum on both sides of (28) with respect to k, we have

$$(30) \ n^4 H^2 |\nabla H|^2 = n^4 H^2 \sum_k H_k^2 \le S \sum_{(i,j,k,\alpha)} (h_{ijk}^{\alpha})^2 \le n^2 H^2 \sum_{(i,j,k,\alpha)} (h_{ijk}^{\alpha})^2.$$

Therefore (27) holds on M^n .

Denote the eigenvalues of L_{n+1} by $\{\lambda_i\}_{i=1}^n$. Then $(\lambda_i)^2 \leq S_{n+1} \leq S \leq n^2H^2$ for all *i*. Hence $|\lambda_i| \leq nH$ for all *i*. Therefore $T = (T_{ij}) = L_{n+1} - nHI_n$ is negative semi-definite.

Suppose that $\sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 = n^2 |\nabla H|^2$ holds on M^n . It follows from (30) that

(31)
$$0 \le n^3(n-1)(c-R)|\nabla H|^2 \le S\left(\sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 - n^2|\nabla H|^2\right).$$

Hence $(c-R)|\nabla H|^2 = 0$ on M^n . Because R < c, $|\nabla H|^2 = 0$ on M^n . In this case, $|\lambda_i| \le (S_{n+1})^{1/2} \le S^{1/2} < nH$ for all i. Thus T is negative definite. This completes the proof of Theorem 3.1.

4. Submanifolds with flat normal bundle

In this section, we propose to use the extension of Cheng-Yau's technique given in section 3 to study the rigidity problem for compact submanifolds in the de sitter space $M_p^{n+p}(c)$. We continue use the same notations as in section 2. Let M^n be a compact submanifold in $M_p^{n+p}(c)$ with nowhere zero mean curvature H. Suppose that ξ/H is parallel and choose $e_{n+1} = \xi/H$. Then $\omega_{n+1\alpha} = 0$ for all α . It follows from (11) and (16) that

$$(32) H_{\alpha,k} = 0, \quad H_{\alpha,kl} = 0,$$

for all $\alpha > n+1$ and $k, l = 1, \dots, n$.

Suppose in addition that the normal bundle of M^n is flat. Then

(33)
$$\Omega_{\alpha\beta} = -\frac{1}{2} R_{\alpha\beta kl} \omega_k \wedge \omega_l = 0,$$

for all α and β on M^n . For all α and β we have $L_{\alpha}L_{\beta} = L_{\beta}L_{\alpha}$, which is equivalent to that $\{L_{\alpha}\}_{\alpha=n+1}^{n+p}$ can be diagonized simultaneously.

We denote the eigenvalues of L_{α} by $\{\lambda_1^{\alpha}, \dots, \lambda_n^{\alpha}\}$ for every α . It follows from [13] that

(34)
$$\frac{1}{2}\Delta S = \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 + n \sum_{i,j,\alpha} H_{\alpha,ij} h_{ij}^{\alpha} + \sum_{\alpha} \sum_{i < j} K_{ij} (\lambda_i^{\alpha} - \lambda_j^{\alpha})^2,$$

where $K_{ij} = c + \sum_{\beta} \lambda_i^{\beta} \lambda_j^{\beta}$ denotes the sectional curvature of M^n corresponding to the plane section spanned by $\{e_i, e_j\}$ for every pair of i < j.

Assume that R is constant and R < c. From (25) and (32), we have

$$\sum_{i,j,k,\alpha}(h_{ijk}^\alpha)^2+n\sum_{i,j,\alpha}H_{\alpha,ij}h_{ij}^\alpha=n\,\Box H+\frac{1}{2}\Delta(n^2H^2)+\sum_{i,j,k,\alpha}(h_{ijk}^\alpha)^2-n^2|\nabla H|^2.$$

Note that $\Delta S = \Delta(n^2H^2)$. Therefore (34) turns into

$$0 = n \square H + \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 - n^2 |\nabla H|^2 + \sum_{i < j} \sum_{\alpha} K_{ij} (\lambda_i^{\alpha} - \lambda_j^{\alpha})^2.$$

Integrating the both sides of above equality on M^n , we have

$$0 = \int_M \left(\sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 - n^2 |\nabla H|^2 \right) * 1 + \sum_{i < j} \sum_{\alpha} \int_M K_{ij} (\lambda_i^{\alpha} - \lambda_j^{\alpha})^2 * 1.$$

If $K_{ij} \geq 0$ on M^n , it follows from (27) and the above equality that

(35)
$$\sum_{(i,j,k,\alpha)} (h_{ijk}^{\alpha})^2 \equiv n^2 |\nabla H|^2; \qquad K_{ij} (\lambda_i^{\alpha} - \lambda_j^{\alpha})^2 \equiv 0,$$

for every α and i < j. Hence we can prove the following theorem

THEOREM 4.1. Let M^n be a compact submanifold with non-negative sectional curvature in $M_p^{n+p}(c)$. Suppose that the normal bundle N(M) is flat and the normalized mean curvature vector is parallel. If R is constant and R < c, then M^n is totally umbilical.

Proof. From the first equality of (35) and Theorem 3.1, we have that H is constant on M^n , then ξ is parallel. From Theorem 3 of [1] we know that M^n is totally umbilical.

REMARK 4.1. In Theorem 4.1, we have used the assumptions that are different from that in Theorem 3 [1] to obtain the same result.

Also, we need the following

LEMMA 4.1 [12]. Let A and B be $n \times n$ -symmetric matrices satisfying Tr A = 0, Tr B = 0 and AB - BA = 0. Then

$$(36) -\frac{n-2}{\sqrt{n(n-1)}} (Tr A^2) (Tr B^2)^{1/2} \le Tr A^2 B$$

$$\le \frac{n-2}{\sqrt{n(n-1)}} (Tr A^2) (Tr B^2)^{1/2},$$

and the equality holds on the right (resp. left) hand side if and only if n-1 of the eigenvalues x_i of A and the corresponding eigenvalues y_i of B satisfy $|x_i| = \frac{(Tr A^2)^{1/2}}{\sqrt{n(n-1)}}, \quad x_i x_j \ge 0, \quad y_i = -\frac{(Tr B^2)^{1/2}}{\sqrt{n(n-1)}} \quad (\text{resp.} \quad y_i = \frac{(Tr B^2)^{1/2}}{\sqrt{n(n-1)}}).$

Choose a suitable normal frame field $\{e_{\beta}\}_{\beta=n+2}^{n+p}$ such that $S_{\alpha\beta}=0$ for all $\alpha \neq \beta$. Then

(37)
$$\sum_{\alpha,\beta>n+1} S_{\alpha\beta}^2 = \sum_{\beta>n+1} S_{\beta}^2 \le S_I^2,$$

where the equality holds if and only if at least p-2 numbers of S_{α} 's are zero.

Taking sum with respect to $\alpha > n+1$ on both-sides of (14), we have

(38)
$$\sum_{i,j,\alpha>n+1} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} = (n c - n H^{2}) S_{I} - n H \sum_{\alpha>n+1} Tr(L_{\alpha}^{2} \bar{L}_{n+1}) + \sum_{\alpha>n+1} S_{n+1\alpha}^{2} + \sum_{\alpha>n+1} S_{\alpha}^{2}.$$

Using the left hand side of (36) to $Tr(L_{\alpha}^2 \bar{L}_{n+1})$, we have

$$Tr(L_{\alpha}^2 \bar{L}_{n+1}) \leq (n-2) S_{\alpha} \sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}}.$$

Substituting this into (38) and using (23) and (37), we have (39)

$$\sum_{i,j,\alpha>n+1} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} \ge S_I \left\{ (n \, c - n \, H^2) - n(n-2) H \sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}} + \bar{S}_{n+1} \right\}.$$

Substituting (32) into (26), we have

$$\sum_{i,j} h_{ij}^{n+1} \Delta h_{ij}^{n+1} \ge n \Box H + \frac{1}{2} \Delta (n^2 H^2) - n^2 |\nabla H|^2$$

(40)
$$+\bar{S}_{n+1}\left\{(n\,c-nH^2)-n(n-2)H\sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}}+\bar{S}_{n+1}\right\}.$$

Note that $\Delta S = \Delta(n^2H^2)$ and

(41)
$$\frac{1}{2}\Delta S = \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 + \sum_{i,j} h_{ij}^{n+1} \Delta h_{ij}^{n+1} + \sum_{i,j,\alpha > n+1} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha}.$$

From (39) and (40), we obtain

$$0 \geq n \square H + \sum_{(i,j,k,\alpha)} \left(h_{ijk}^{\alpha} \right)^2 - n^2 |\nabla H|^2$$

(42)
$$+\bar{S}\left\{(n\,c-nH^2)-n(n-2)H\sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}}+\bar{S}_{n+1}\right\}.$$

Consider the quadratic form $Q(u,t) = u^2 - \frac{n-2}{\sqrt{n-1}}ut - t^2$. By the orthogonal transformation

$$\left\{ \begin{array}{l} \bar{u} = \frac{1}{\sqrt{2n}} \{ (1 + \sqrt{n-1})u + (1 - \sqrt{n-1})t \} \\ \bar{t} = \frac{1}{\sqrt{2n}} \{ (\sqrt{n-1} - 1)u + (\sqrt{n-1} + 1)t \} \end{array} \right.$$

Q(u,t) turns into $Q(u,t) = \frac{n}{2\sqrt{n-1}}(\bar{u}^2 - \bar{t}^2)$, where $\bar{u}^2 + \bar{t}^2 = u^2 + t^2$.

Take $u = \sqrt{\overline{S}_{n+1}}$, $t = \sqrt{n}H$, then

$$nc - nH^{2} - n(n-2)H\sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}} + \bar{S}_{n+1}$$

$$= nc + Q(u,t) = nc + \frac{n(\bar{u}^{2} - \bar{t}^{2})}{2\sqrt{n-1}}$$

$$= nc + \frac{n(-\bar{u}^{2} - \bar{t}^{2})}{2\sqrt{n-1}} + \frac{n\bar{u}^{2}}{\sqrt{n-1}}$$

$$\geq nc - \frac{n\bar{S}_{n+1}}{2\sqrt{n-1}}$$

$$(43)$$

Note that

$$\bar{S}_{n+1} \le \bar{S}_{n+1} + S_I = \bar{S}.$$

From (43), (44) and (27) we have

$$(45) 0 \ge n\Box H + \bar{S} \left\{ nc - \frac{n\bar{S}}{2\sqrt{n-1}} \right\}.$$

Integrating the both sides of (45) on M^n , we have

$$(46) 0 \ge \int_M \bar{S} \left\{ nc - \frac{n\bar{S}}{2\sqrt{n-1}} \right\} * 1.$$

Therefore we can prove the following

THEOREM 4.2. Let M^n $(n \ge 3)$ be a closed space-like submanifold with parallel normalized mean curvature vector field immersed into $M_p^{n+p}(c)$. Suppose that R is constant and $\bar{R} = c - R > 0$. If the normal bundle N(M) is flat and

$$(47) S < nH^2 + 2\sqrt{n-1}c,$$

then $S = nH^2$ and M^n is umbilical (hence isometric to a sphere).

Proof. Denote $\bar{R} = c - R$. Then $\bar{S} = n(n-1)(H^2 - \bar{R})$ and $S = n\bar{R} + n^2(H^2 - \bar{R})$. Since $n \geq 3$, we have

(48)
$$nc - \frac{n\bar{S}}{2\sqrt{n-1}} = n\left(c - \frac{n(n-1)(H^2 - \bar{R})}{2\sqrt{n-1}}\right) = n\left(c - \frac{S - nH^2}{2\sqrt{n-1}}\right).$$

It is clear that the condition (47) is equivalent to

$$(49) nc - \frac{\bar{S}}{2\sqrt{n-1}} > 0.$$

From (46) and (49) we have $\bar{S} = 0$ on M^n , so $H^2 = \bar{R}$ and $S = n\bar{R}$, that is $S = nH^2$. Since H is constant on M^n , hence ξ is parallel, from Theorem 3 of [1] we know that M^n is totally umbilical.

References

- [1] R. Aiyama, Compact space-like submanifolds in a pseudo-Riemannian sphere $S_p^{m+p}(c)$, Tokyo J. Math. 18 (1995), 81–90.
- [2] H. Alencar and M. P. do Carmo, Hypersurfaces with constant mean curvature in spheres, Proc. Amer. Math. Soc. 120 (1994), 1223-1229.
- [3] K. Akutagawa, On space-like hypersurfaces with constant mean curvature in the de Sitter space, Math. Z. 196 (1987), 13-19.
- [4] Q. M. Cheng, Complete space-like submanifolds in a de Sitter space with parallel mean curvature vector, Math. Z. 206 (1991), 333-339.

- [5] S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), 195-204.
- [6] Z. H. Hou, Hypersurfaces in sphere with constant mean curvature, Proc. Amer. Math. Soc. 125 (1997), 1193-1196.
- [7] H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann. 305 (1996), 665-672.
- [8] _____, Global rigidity theorems of Hypersurfaces, Ark. Mat. 35 (1997), 327–351.
- [9] B. O'Neill, Semi-Riemannian Geometry, New York, Academic Press, 1983.
- [10] M. Okumuru, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207-213.
- [11] J. Ramanathan, Complete space-like hypersurfaces of constant mean curvature in the de Sitter space, Indiana Univ. Math. J. 36 (1987), 349-35.
- [12] W. Santos, Submanifolds with parallel mean curvature vector in spheres, Tôhoku Math. J. 46 (1994), 403–415.
- [13] K. Yano and S. Ishihara, Submanifolds with parallel mean curvature vector, J. Diff. Geom. 6 (1971), 95-118.
- [14] S. T. Yau, Submanifolds with constant mean curvature, Amer. J. Math. 96 (1975), 346-366; 97 (1975), 76-100.
- [15] Y. Zheng, Space-like hypersurfaces with constant scalar curvature in the de Sitter spaces, Diff. Goem. and its Appl. 6 (1996), 51-54.

Department of Applied Mathematics Dalian University of Technology Dalian 116024, China

and

Institute of Mathematics Academy of Mathematics and Systems Sciences Chinese Academy of Sciences Beijing 100080, China E-mail: xmliu@dlut.edu.cn