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SPACE-LIKE SUBMANIFOLDS WITH CONSTANT
SCALAR CURVATURE IN THE DE SITTER SPACES

Liv XIMIN

ABSTRACT. Let M™ be a space-like submanifold in a de Sitter space
M7 7P(c) with constant scalar curvature. We firstly extend Cheng-
Yau’s technique to higher codimensional cases. Then we study the
rigidity problem for M™ with parallel normalized mean curvature vector
feld.

1. Introduction

Let My *?(c) be an (n+p)-dimensional connected semi-Riemannian man-
ifold of constant curvature ¢ whose index is p. It is called an indefinite space
form of index p and simply a space form when p = 0. If ¢ > 0, we call
it as a de Sitter space of index p. Akutagawa [3] and Ramanathan [11]
investigated space-like hypersurfaces in a de Sitter space and proved inde-
pendently that a compiete space-like hypersurface in a de Sitter space with
constant mean curvature is totally umbilical if the mean curvature H sat-
isfies H2 < ¢ when n = 2 and n?H? < 4(n — 1)c when n > 3. Later, Cheng
[4] generalized this result to general submanifolds in a de Sitter space.

To our best knowledge, there are almost no intrinsic rigidity results for
the space-like submanifolds with constant scalar curvature in a de S1tter
space until Zheng [15] obtained the following result.

THEOREM. Let M™ be an n-dimensional compact space-like hypersur-
face in M?*1(c) with constant scalar curvature. If M™ satisfies

(1) K(M) >0,

(2) Rie(M) < (n~ 1)c,

(3) R<e,
where R is the normalized scalar curvature of M™, then M™ is totally
umbilical.
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In [5], Cheng-Yau firstly studied the rigidity problem for a hypersurface
with constant scalar curvature in a space form by introducing a self-adjoint
second order differential operator (See Theorems 1 and 2 in [5]). They
proved that, for an M™ in M™1{(c), if R is constant and R > ¢, then
[Vo|? > n2lVH|? where o and H denote the second fundamental form
and the length of the mean curvature vector field of M™ respectively. By
using Cheng-Yau’s technique, Li [7] {8] studied the pinching problem and
also proved some global rigidity theorems for hypersurfaces with constant
scalar curvature.

In the present paper, we would like extend Cheng-Yau's technique to
higher codimensional cases and use this result to study the rigidity prob-
lem for space-like submanifolds in a de Sitter space with constant scalar
curvature.

2. Preliminaries

Let MP?(c) be an (n -+ p)-dimensional semi-Riemannian manifold of
constant curvature ¢ whose index is p. Let M™ be an n-dimensional Rie-
mannian manifold immersed in My *"(c). As the semi-Riemannian metric
of M;*?(c) induces the Riemannian metric of M™, M™ is called a space-
like submanifold. We choose a local field of semi-Riemannian orthonormal
frames ey, ...,€psp i My 1P(¢) such that at each point of M™, e1,...,€n
span the tangent space of M™ and form an orthonormal frame there. We
use the following convention on the range of indices:

1<ABC,...<n+p; 1<4,5,k...<n; n+l<af,ySn+tp.

Let wi,. . - ,Wntp be its dual frame field so that the semi-Riemannian metric
of MJ*P(c) is given by d&? = T, w? — Y wl = L4 €aw, where ¢ = 1
and ¢, = —1. Then the structure equations of My " F(c) are given by
(1) dwp =) epwap Awp, waB TwBa =0,
B
1
(2) dwap =Y _ €cwWac AWCB — 3 > Kapcpwe Awp,
c C,D
(3) Kapcp = ceaep(dacdpp — 6apdpo).

Restrict these form to M™, we have

(4) we=0 ntl<alntp,
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the Riemannian metric of M" is written as ds®* = 3, w?. From Cartan’s
lemma we can write

(5) Wai = Y h&wj, hE = h%.
J

From these formulas, we obtain the structure equations of M™:

(6) duw; = Zwij Awj, wij +wji =0,
j
1
(7) dwij =Y wik Awi; — 3 > Kijrwr Awi,
% )
(8) Rijrt = (6051 — 0udjr) — Z:(h?;c 51— hihik),

54

where R;j; are the components of the curvature tensor of M™.
For indefinite Riemannian manifolds in detail, refer to O’Neill [9].
Denote Lo = (Afj)nxn and Ho = (1/n) 37, A% fora=n+1,--- ,n+p.
Then the mean curvature vector field £, the mean curvature H and the
square of the length of the second fundamental form § are expressed as

£=) Haea, H=1¢|, S=)_(h})?,
o i,

respectively. Moreover, the normal curvature tensor {R.gw}, the Ricci
curvature tensor { R;x } and the normalized scalar curvature R are expressed
as

Ropri = Z(hgmhiz _h?mhik),

m
Ry = (n—l)cdik—nZ(Ha)hﬁchzh% Tk
o a!j
B 1 22
9) R = ot —y(8 - n?H?).

Define the first and the second covariant derivatives of {h{;}, say {hg;;}
and {hjy} by

(10) 3 A% = dh + > A+ > W + 3 Kiwga,
k k k 8 .
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(11) Z h%klwl = dh:;k + Z h?njkwmi + Z h?mkwmj
i m m
+ D Wt + Y Wjpa
m B

Then, by exterior differentiation of (5), we obtain the Codazzi equation
(12) A hisk = hik;-
It follows from Ricci’s identity that

(13) A —hSw =D h%Ruir + O W Rmjk + 3 b Rgakt:
m m 8
The Laplacian of h; is defined by Ahg; = 3y hiji. From (13), we have

Ah%‘ = nHa:ij + Z hngmijk + Z h?mRmkjk + Z hfkRﬂajk

k,m km k‘,‘@
= nHa,,;j + nch% - nCHaa,;j — nz Hﬁh?mhij + Z Saﬁhg'
B.m A
~2 3" RORERE + D R RO + Y AR,
5’k,m m,k,,@ ﬁlk!m

where Sug = Y., ; h&shY, for all o and 8. Define N(4) = ¥, ; a2 for any
real matrix A = (a;j)nxn. Then we have

SOREAREG = nY_ Heuh$ +ncSe —cn’Hi —n > HpTr(LiLg)
i3 )

i,j B
(14) + 825+ N(LaLg — LgLa),
s ]

where S = 3, ; (h$:)?, for every a.
Suppose H > 0 on M™ and choose ep41 = £/H. Then it follows that

(15) H,,1=H; H,=10, a>n+1.
From (10) and (15) we can see
(16) Hypypwy =dH, Hggwip = Hwptlo a>n+l.
From (11), (15) and (16) we have
(17) Hpyr o = Hp — *;7 Z HprHpg,,
B>n+1

where dH = Y, Hiw,; and VHy = 3, Hyyw = dHy + Hywyy, for all k.
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Using (14) and (17), we have
Zhn+1Ahn+1 — nZH hn+1 _n Z: Hg, @Hg,jhn+l

H -
i, A>»ntl
+n cSn+1 —en?H? — nH fri1 + Sn+1 + Z +1ﬁ
A>n+1
(18) + Z N{Ln+1Lg — LgLlny1),

B>n41

where foy1 = Tr{Lnyy)3.
M. Okumura [10] established the following lemma (see also [2]).

LEMMA 2.1. Let {a;}?, be a set of real numbers satisfying ¥ ; a; = 0,
Y. a? =, wheret > 0. Then we have

B Z 3. _N—2 3
\/n(n 1 = an-1)
and the equalities hold if and only if at least (n — 1) of the a; are equal.
Denote the eigenvalues of Ly by {X}% ;. Then we have
(19) nH = Z)\i, Sn+1= Z)‘?: fan= Z)\f
i i i
Set I_/n+1 = Ln+1 - HIm fn+1 = fn+1 e 3HSn+1 + 2nHSs Sn+1 =

Spi1 — nH?, and X; = \; — H, where I, denotes the identity matrix of
degree n. Then (19) changes into

(20) 0= Z/\z, Snt1 = Z»\i, 1= ZAS

By applying Okumura’s Lemma to fp41, we have

_ n—2 — —
fra1 € —==—=Cn 114/ Sny1 ==
n{n — 1)
3 n— 2 = =
frrt £3HSp 41 — 2nH” 4+ ——===——="S8n11y/ Snt1.
n(n—1)

So we have
(21) neSnp1 — cnPH? — nH fyi1+ 5244

~ _ S,
> Snti{nc+ Spy1 — nH? — n{n —2)H n(nn+1 )}
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It follows from (15) that

(22) Y Sap= Y (Do - HepRGY
B>n+1 B>n+l ij
Denote S; = 3 _g.,,,+1 Sg- From (22), we have
(23) z S,,2l+1’3 S Sn+131.
. Bon+l

Let T = Zi,j T;;wiw; be a symmetric tensor on M™ defined by
(24) ﬂj = h;}-{-l - TLHCSU
We introduce an operator [] associated to T acting on f € C%(M™) by
Of =Y Tifii = Y k5 fiy —nHAS,
i, 1,3
where A is the Laplacian. Since (T};) is divergence-free, it follows from [5]

that the operator [ is self-adjoint relative to the L2-inner product of M™.
Choosing f = H in above expression, we have

(25) ST hEHH; =0H + nHAH.
2
Denote § = 8,41 + S7. Substituting (21), (23) and (25) into (18), we get

SorptlaRztt > n0H + %nzA(H2) — n?|VH[?

i,j
n T
H Z Z HﬁafHﬁ,jh@jH
Aen+l 4,3
+ Y N(LnsiLs - Lglot)
B>n+1l
(26) +5’n+1 ne—nH?+ §n+1 —n(n—2)H Sn+1 .
n(n — 1)

3. An extension of Cheng-Yau’s technique

Cheng-Yau [5] gave a lower estimation for |Vo|?, the square of the length
of the covariant derivative of o, which plays an important role in their
discussion. They proved that, for a hypersurface in a space form of constant
scalar curvature c, if the normalized scalar curvature R is constant and
R > ¢, then |Vo|? > n?2|VH|2.
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For the space-like submanifolds in a de Sitter space, we can prove the
following

THEOREM 3.1. Let M™ be a connected submanifold in Myt¥(c) with
nowhere zero mean curvature H. If R is constant and R < ¢, then

(27) Vol? = )~ (h§s)? > n*|VH]?
2,5,k,00
and the symmetric tensor T' defined by (24) is negative semi-definite. More-
over, if the equality in (27) holds on M™, then H is constant and T is
negative definite.
Proof. From (9), we have n?H? — § = n{n — 1)(c~ R) > 0. Taking the
covariant derivative on both sides of this equality, we get
n’H H, = Zh ok k=1 ,n
73’
For every k, it follows from Cauchy—Schwarz’s inequality that
(28) n4H2H£ Z h zjk < SZ(h’uk y
,J Fed i J 143
where the equality holds if and only if there exits a real function ¢ such
that
(29) hey, = ok B,
for all 4,5 and «. Taking sum on both Sldes of (28) with respect to k, we
have
(30) niH?|VH] = n4H2ZH2 <8 D ) <n?H? > (R
(1,3,k,e) (4,5,k,c)
Therefore (27) holds on M™.
Denote the eigenvalues of L, .1 by {/\ 32, Then (A)2 < 841 €8 <
n?H? for all i. Hence |A;| < nH for all«i. Therefore T=(Tj)=Ln1 —
nH I, is negative semi-definite.
Suppose that 3, ., (Af)? = n?|VH|? holds on M™. It follows from
(30) that

B1)  0<nAi(n—1)(c—RIVHP<S| Y () —n*|VH|?

i3k
Hence (c— R)|VH|? = 0 on M™. Because R < ¢, [VH|? = 0 on M™. In this
case, [A;] € (Sns1)/2 < 8Y2 < nH for all i. Thus T is negative definite.
This completes the proof of Theorem 3.1. O
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4. Submanifolds with flat normal bundle

In this section, we propose to use the extension of Cheng-Yau'’s technique
given in section 3 to study the rigidity problem for compact submanifelds
in the de sitter space My ?(c). We continue use the same notations as in
section 2. Let M™ be a compact submanifold in M, *?(c) with nowhere zero
mean curvature H. Suppose that £/H is parallel and choose e,4+1 = £/H.
Then wyi1q = 0 for all a. It follows from (11) and (16) that
(32) Hyrx =0, Haop=0,

forala>n+land k,I=1,---,n
Suppose in addition that the normal bundle of M™ is flat. Then

1
(33) Qg = _§Raﬁklwk Awp =0,

for all & and 8 on M™. For all « and 8 we have LoLg = LgL,, which is

equivalent to that {L,}"1? 41 can be diagonized simultaneously.

We denote the eigenvalues of L, by {A§,---, A%} for every a. It follows
from [13] that

(34) —AS = Y (W) +n Z Hoshd + 30> Ky (A8 — 297,

i,k 5,0 o i<

where Kij = ¢+ 3 4 )\ﬁ /\B denotes the sectional curvature of M™ corre-

sponding to the plane sectlon spanned by {e;, e;} for every pair of i < j.
Assume that B is constant and R < ¢. From (25) and (32), we have

3" (&)Y Hoyhfy =nOH+ 5 A(n2H2 + 3 (W) —n?|VH|
i‘J)k o i!jiu ?J?k ¢
Note that AS = A(n2H?). Therefore (34) turns into
0=nOH+ Y (h&)2—n?|VHP + 3> Kg(Af - 292
i.4.k0 i<j o
Integrating the both sides of above equality on M™, we have

.[ ( Z (htjk)2 2IVH|2) *1+ ZZ/ Kij(Af — )\a)2 * 1.

)J k o ‘L(J o
If K;; > 0 on M™, it follows from (27) and the above equality that
(35) S hg)E=HVHE  Ky(h§ - A% =0,
(i,5,k.a)
for every a and i < j. Hence we can prove the following theorem
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THEOREM 4.1. Let M™ be a compact submanifold with non-negative
sectional curvature in My ?(c). Suppose that the normal bundle N (M) is
flat and the normalized mean curvature vector is parallel. If R is constant
and R < ¢, then M™ is totally umbilical.

Proof. From the first equality of (35) and Theorem 3.1, we have that H
is constant on M™, then £ is parallel. From Theorem 3 of [1] we know that
M?™ is totally umbilical. W

REMARK 4.1. In Theorem 4.1, we have used the assumptions that are
different from that in Theorem 3 [1] to obtain the same result.

Also, we need the following

LEMMA 4.1 {12]. Let A and B be n x n-symmetric matrices satisfying
TrA=0,TrB=0and AB—-—BA=0. Then

n—2

—— 2 r 2y1/2 2
(36) n(n__l)(TfrA WTr BH)Y2<Tr A’B
_%(TTA%(T?«B?)W,

and the equality holds on the right (resp. left) hand side if and only if n—1
of the eigenvalues z; of A and the corresponding eigenvalues y; of B satisfy

g @rANE L _(Tr B2 _ (TrB)2
|$z| \/m, AR >0, w \/m (resp. Yi = \/m)

Choose a suitable normal frame field {eﬁ}giﬁ +o Such that Syg = 0 for
all « # 8. Then

(37) S Sia= Y Sp<SE
a,@>n+1 B>n+l

where the equality holds if and only if at least p — 2 numbers of S,’s are
Z€ero.
Taking sum with respect to @ > n + 1 on both-sides of (14), we have

> RGARG = (nc—nH)S —nH Y Tr(LiLn,)

i,5,a>n+l a>n+l

2 2

(38) + > St Y. S
a>n+l a>n+l

Using the left hand side of (36) to Tr{L2L, 1), we have
g’n-{—l

Tr(LaLn+1) < (n—2)Sy An-1)’
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Substituting this into (38} and using (23) and (37}, we have
(39)

Z hi; ARG > i (ne—nH?) —nn-2H Sui1 + 811
i,f,a>n+1 (n 1)

Substituting (32) into (26), we have

Z REFIARTTY > nOH + %A(HZHZ) —n?|VH|?

(40) +8n11 {(nc —nH?) —n(n—2)H n_(‘ini—ll) + 5’n+1} .

Note that AS = A(n?H?) and
(41) gAS = 3 (g Y _RETARET 4 T hZARS.
;.71k x !;J ,J" a>ﬂ+1 .\
From (39) and (40), we obtain
0 >n0H+ > (k&) —n*VH]
(2d,k,00)
_ S
(42) +S {(nc —nH?%) —n(n—2)H (nn—+11) + Sn+1}
n—2

Consider the quadratic form Q(u,t) = % — ﬁut —t2. By the orthogonal
transformation

{ = {4 VA= Dut (= V=)
f= A{(vVn—T-Du+(Vn—1+1)t}
Q(u,t) turns into Q(u,t) = v,mf(uz' — #2), where @ + 2 = u? + 2,
Take u = 1/ Sn41, t = v/nH, then

Sn+1
n(n —1)
n{u? — %)
2v/n—1
n{~u? - %) nii?
2vn—1 V-1
ngn+1

2vn—1

ne—nH? —n(n—2)H + Spt1

=nc+ Qu,t) =nc+

=nc+

(43) > ne—
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Note that
(44) Sn+1 < S'n.+1 + 5= S.
From (43), (44) and (27) we have
= nS
45 0>nl0H+ S ——r.
(45) > nlH + {nc 5 \/m}
Integrating the both sides of (45) on M", we have

(46) Oszg{nc—z\/%}*l.

Therefore we can prove the following

THEOREM 4.2. Let M™ (n > 3) be a closed space-like submanifold with
parallel normalized mean curvature vector field immersed into ]\f[;,"-"p (c).
Suppose that R is constant and R = ¢ — R > 0. If the normal bundle
N(M) is flat and

(47) S < nH?+2vn — Lc,
then S = nH? and M™ is umbilical (hence isometric to a sphere).

_Proof. Denote R = c— R. Then § = n(n— 1)(H? — R) and § =
nR+n?(H? — R). Since n > 3, we have

nS n{n—1)(H?-R S —nH?
48 i = e — =nlc— 2—).
48) ne 2¢/n—1 n(e 2yn—1 ) =nle 2vn — 1)
It is clear that the condition (47) is equivalent to
S
49 . - —2>0.
(49) " amo1

From (46) and (49) we have § =0 on M™, so H2 = R and S = nR, that is
S = nH?. Since H is constant on M", hence £ is parallel, from Theorem 3
of [1] we know that M™ is totally umbilical. O
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