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Control Algorithm for Stabilization of Tilt Angle of Unmanned

Electric Bicycle

Sangchul Han, Jongkil Han, and Woonchul Ham

Abstract: In this papers, we derive a simple kinematic and dynamic formulation of an unmanned electric bicycle. We also check
the controllability of the stabilization problem of bicycle. We propose a new control algorithm for the self stabilization of unmanned
bicycle with bounded wheel speed and steering angle by using nonlinear control based on the sliding patch and stuck phenomena which
was introduced by W. Ham. We also propose a sort of optimal control strategy for steering angle and driving wheel speed that make the
length of bicycle’s path be the shortest. From the computer simulation results, we prove the validity of the proposed control algorithm.
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I. Introduction

One of the hot research topic in mobile robot is the auto-
matic motion planning [1]. P. Ferbach[2] dealt with tractor-
trailer robots evolving in a plane between obstacles by using
a progressive constraint approach. There has been many auto-
matic planning problems with car-like robots. In 1988, I.J.Cox
made experimental cart, "Blanche” that was a tricycle configu-
ration with a single front wheel which serves both for steering
and driving the cart and two passive load-bearing rear wheels
[5] [6]. In those paper, he introduced the cart coordinates and
kinematics and solved path tracking problem. We adopted the
same approach from those papers to derive the kinematics of co-
ordinate and an unmanned Electric bicycle [5]. Recently, there
were some researches concerning control problem of bicycle.
Among these, some researchers utilized fuzzy and inteligent
control [7] and others tried to closed-loop, time-invariant and
globally stable nonlinear control law for a bicycle-like kine-
matic model based on Lyapunov stability theorem [8]. But al-
most all of those papers are focusing on tracking and planning
problem and in my opinion no one has yet tried to solve the au-
tomatic planning problem for the stabilizing the attitude of the
unmanned bicycle while making it be staying in some given re-
gion. In this paper, we try to solve the above automatic planning
problem with bounded inputs such as bounded steering angle
and bounded driving wheel velocity without making the bicycle
pass over the given boundary of some region. We also try to find
feasible motion to make bounded region as small as possible.

This paper presents a nonholonomic motion planning method
applied to the unmanned electric bicycle. We describe the for-
mulation of the problem touched in this paper. In the first,
we propose a motion planning which can only guarantee the
stabilization of the tilt angle of bicycle without restriction of
its location, that is, bicycle can go any where without falling
down. Next we suggest a new motion planning strategy which
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can guarantee not only the stabilization but also the regional
boundedness of its location. The computer simulation results
show the effectiveness of the proposed control algorithm

II. Unmanned Electric Bicycle

In this section, we consider the kinematic and dynamic model
of electric bicycle.

1. Kinematic and Dynamic Models

A bicycle is depicted in Fig. 1. Let py denote the center point
of the steering front wheel and p, the center point of the driving
rear wheel. Let L be the distance between p; and p...

The bicycle’s position is parameterized by the coordinate
z,y of p. and by the orientation of §. The configuration of
the bicycle can be determined by kinematic parameter vector
g = (x,y,0). We denote by w the angular velocity of the
driving wheel, by a the steering angle, by ¢ the tilt angle of
the center of mass of bicycle with respect to the normal axis
of the ground, by A the distance of the center of mass of bi-
cycle from the ground, and by R the radius of driving wheel.
Steering angle « is mechanically bounded by ®mae, and w is
bounded by wmaz. {From the nonholonomic constraint that the
wheels doesn’t slide sideways and centrifugal force from the
curvature of the path, we obtain the following kinemetic and dy-
namic equations and refer to [3] for the details. We can sce that
the kinematic equation (1),(2),(3) is the same as that of equa-
tion(3.1) of [5] and equation(1) of [6] and the dynamic equa-
tion(4) can be derived by considering centrifugal force from the
curvature of the path and the gravitational force. We can also
see that the dynamics is independent of the mass of bicycle and
we assumed that the bicycle is modeled as point mass in this

paper.

z(t) = Rw(t)cosa(t)cosh(t) (h
y(t) = Rw(t)cosa(t)sind(t) (2)
8(t) = (R/L)w(t)sina(t) 3

hé(t) = gsind(t) — (R?/L)sina(t)w?®(t)cos’a(t)cosd(t)
“

where g denotes the constant of gravity.

2. Problem Formulation

Wa tev tn calua tha fallauring tsun tunac af cantral nenhlame
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Fig. 1. Kinematic and dynamic parameters of Bicycle.

2.1 Type A
We try to find the angular velocity w(t) of the driving wheel
and steering angle «(t) that satisfy the following condition

tlim o(t) =0,
that is, we only focus on the stabilization of the bicycle.

2.2 Type B

In this case, we try to find the angular velocity w(t) of the
driving wheel and steering angle «(¢) that satisfy the following
conditions

lim g(t) =

t-—00
(m,y) ER= {(’u,’l}) l H(’U,,’U)H < R1}7
that is, we try to make the bicycle do not cross over a bounded
area.

IL Stuck and Sliding Patch
In this section, we will summarize the stuck and sliding patch
theory which was introduced by W.Ham [4]. Let the following
2-nd order nonlinear system be marginally stable, that is, its
state trajectory is oscillating in the phase plane.

&1(t) = fi(z(t), z2(1))
E2(t) = falz1(t), x2(t)) )
We summarize all kinds of ”stuck™ or “sliding patch” of the
2-nd order nonlinear system by adding some kinds of linear and

nonlinear switching functions as follows.
1. Linear Stuck and Sliding Patch

Type SL 1:
()= filzr,z2) —misgn(z)
Za(t) = fa2(x1, 22) (©)
Type SL 2:
E1(t) = fi(z1,22)
Z2(t) =  folz1,z2) —72sgn(z2) N
Type SL 3:
21(t) =  fi(z1,@2) — nisgnlazy + Bx2)
La(t) = fa(zr,%2) — Mmsgn(ox: + Bz2) (8)
Type SL 4:

z1(t) = fi(z1,z2) — nisgn(az: + Bz2)
—72sgn(Bz1 — ax2)

&2(t) = fa(z1,72) — nsgn{az: + Br2)
—y28gn{Bx1 — axa) ©)

2. Nonlinear Stuck and Sliding Patch
Type SN 1:

#1(t) =  fi(wr,z2)— Vl%sgn(f(l’hm))

()= flone), m=gr (10)

Oz
Type SN 2:

#1(t) = fi(z1,z2), ’71‘—‘_;22
Bxo

. af

#2(t) = falzy,22)— mg—sgn(f(zi,z2)) (D)
T2

Type SN 3:
. of
t1(t) = filzr,x2) ~'y1—8—x;sgn(f(:c1,a:2))
#2(t) = fa(w1, z2) —m%sgn(ﬂm,mz)) (12)
Type SN 4:
$1(t) = fl (ml,x2) Y a—leSgn(f(xl,mg))
_’725%sgn(f (z1,x2))
B2(t) = fa(er,w2) — 1 2L sgn(f (21, 22))

~y2 8 sgn(f - (21, 22)) (13)
where
Y3 Y4
M= 272 572 ”= T 2
of of afL afl
a1 T Bag 79% +79%

and s, 4 are positive constants, £(0,0) = 0, f+(0,0) = 0
and the nonlinear switching functions must be selected to satisfy
one of the following conditions if it is possible.

Condition 1: For any ¢; and c2, the two curves described by
f(z1,22) = ¢ and f-(x1,22) = co must be orthogonal to
each other at any intersection points.

In real situation, it is very difficult to find switching func-
tions that satisfy the above condition. So we weaken the above
condition as follows.

Condition 2: Two curves described by f(z1,z2) = c; and
f l(ac1,202) = ¢ must be nearly orthogonal to each other at
any intersection points in a local region.

Let us take an example that satisfies the condition 2
as follows, where we select nonlinear switching function
flxi, ) = x1 + 23, fL(zy,22) = 2% — z2. As we can
see in fig. 2, the state trajectory of the above nonlinear system
converges to origin and there exists a stable sliding patch on the
nonlinear switching curve expressed by f(x1,22) = 21 +23 =
0.

Example 1:
#(t) = (2 — 22 + Tx2 — lf*gofgsgn(:cl +3)
—l—sf—gé?-sgn(:c? — 2)
da(t) = —z1(2% 4+ 1) — %%sgn(zl +23)
+%§x{sgn(m? - X2),
21(0) =0, 2(0) = 10 (14)

IV. Control Law
In this section, we will apply the previous stuck and sliding
patch theory for the stabilization of the unmanned electric bicy-
cle.
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Fig. 2. State trajectory of Example 1.

1. Type A Problem

At first, we propose a control law for the Type A problem
which was described in section II. In this case, the control prob-
lem is to find the control input 1) () = cos®a(t)sina(t)w? ()
such that ¢(t) converges to zero as time goes to infinity. The
dynamic equation (4) can be expressed by the following state

equations
E(t) = z2(f)
z2(t) = aisinz1(t) — bicosxi(t) ui(t) (15)

where a1 = g/h, bx = (R*/Lh), and z;(t) = ¢(t). Then we
propose a control law through the following theorem.
theorem 1: If we adopt the following control law

u(t) = gbfismzl(t) + Logn(Ga(t) +aa(t) (16
1

then the system( 15) can be asymptotically stable for some initial
condition such that

121(0)] = [0(0)] < Prmaz, 72(0) = ¢'(0) =0,

where ¢mq. is positive real number between 0 and 7 /2.
proof: If we apply the above control law (16) to the dynamic
equations (15), we obtain the following equation.

B = )
#a(t) =  aisinzi(t) — 2a1sina (t)cosx (t)
—  vyeosz1(t)sgn(bx1(t) + x2(¢)) (17
If the switching gain v = 0, this equation becomes

marginally stable and this fact can be easily shown by choos-
ing Lyapunov candidate function

V(t) =

x3(t) . 2 T
3 + ai(sin"x1(t) —/0 sin(o)do)  (18)
which is positive for any |21 (t)| < ¥ and proving that its time
derivative is zero. Therefore we can see that equation (17) is the
special case of stable nonlinear stuck and patch Type SN 2.
Please refer to [4] for more detail analysis of the stability for

dlin mmmmmmal i ctrvalin nemd Gl mntaban

2. Type B Problem

Now, we propose a control law for the T'ype B problem
which was described in section II. It is to find the angular veloc-
ity w(t) of the driving wheel and steering angle a(t) that satisfy
the following conditions

frm, o) =0
(e.y) € B = {(w2) | |(w )]l < R},

that is, we try to make the bicycle do not cross over a bounded
area. We propose the following control law to make bounded
area small from the heuristic control strategy.

Control Law 1:

alt) Smaz ()

U1, mazx
] ; 1f 1
o(t) = \/—Q——w.s —sgn(ua(t)) ifui(t) #0 (19)
0 fu(t)=0
We also propose another control law that makes the over all
Iength of the path [ expressed by

l:/Vﬁw+W@Mt 20)

as short as possible. By using equation (1)-(2), we obtain

l= / v R? w(t)?cos?a(t) dt 20

If we use the following fact that the control input is defined as
follows
u1(t) = cos’a(t)sina(t)w?(t),

[ can be written by

= [ B, e

sina(t

Now we propose the following control law that makes the over
all length of the path be the shortest.
Control Law 2:

a(t) Qmazsgn(ui(t))
o(t) = { \/ﬁsgn(ul(t)) ifur(t) #0 23)
0 ifuy(t) =0.
We can see that the control structure of the above optimal con-
trol law is very similar to the “bang-bang” control which might
be occurred in time optimal control problem.

V. Simuiation

In this section, we try to verify the effectiveness of the pro-
posed control laws from the computer simulations. We can eas-
ily obtain the simulation results by using Mathlab simulink tool-
box. We set the parameters R, h, L, v, ®maz, %1, ma and initial
condition ¢(0) as 0.35m, 0.4m, 1.0m, 2, 7, 70 and 0.2rad re-
spectively. Fig. 3 shows the the response of the generated tilt
angle of the bicycle and the control input u; (t). As we can see,
the tilt angle converges to zero in less than 2.0 sec, and there
occurs a chattering in control input. Fig. 4 and Fig. 5 show the
trajectories of the paths and their lengths when we apply con-
trol law 1 and control law 2 respectively. The length of path
obtained by using control law 1 is 6.82m and the length of path
obtained by using control law 2 is 4.13m. Therefore, we verify

that tha lanath Af nath Ahtainad hy ucinag canteal law 7 ie chartar
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Fig. 3. Control input u; and tilt angle ¢.
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Fig. 4. Trajectoy of the path. (control law 1)

than that of control law | as we guessed in section V. But as
you can see in Fig.3, there occurs a chattering problem and in
real field, this proposed control algorithm must be a little bit
modified to handle this kind of chattering problem and we will
tackle this problem in near future. The optimal concept which
is dealt in section IV is dependent on the control law expressed
by equation (16) and if we can find another better control law
which can replace this equation, then we can obtain better short
trajectory which also guarantees the stability of tilt angle.

VI. Conclusion
In this paper, we propose nonholonomic motion planning that
can stabilize the tilt angle of the unmanned electric bicycle. We
solve the two kinds of control problems which can guarantee
not only the stabilization but also the regional boundedness of
bicycle’s location. We suggest a kind of optimal control strat-
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Fig. 5. Trajectoy of the path. (control law 2)

egy that makes the length of the path as short as possible based
on the stable control input which is derived by using nonlinear
stuck and patch phenomena introduced by W.Ham. The optimal
concept which is dealt in this paper is dependent on the control
law expressed by equation (16). Computer simulation results
show the effectiveness of the proposed control algorithms. I
hope this short note can be helpful to the researchers who are
eager to find nonlinear control law for stabilization of bicycle
problem. The optimal concept which is dealt in this paper is
dependent on the control law expressed by equation (16) and if
we can find another better control law which can replace this
equation, then we can obtain better short trajectory which also
guarantees the stability of tilt angle.
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