Dynamic Nonlinear Analysis of Stiffened Shell Structures
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ABSTRACT

For the dynamic nonlinear analysis of stiffened plate and shell structures, fotal Lagrangion formulation is presented bosed upon the degenerated
shell element considering finite rofation effects. Assumed strain concept is adopted in order to overcome shear locking phenomena and fo eliminate
spurious zero energy mode. In the elasto-plastic onalysis, the return mapping algorithm based on the consistent elasto-plastic fangent modulus s
applied to collapse andlysis of shell structures. Newmark integration method Is used for dynamic nenlinear analysis of shell structures under dynamic
forces.
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1. Introduction only the membrane part. Bathe and Dvorikin® and Bucalem
and Bathe® presented the elements based on the mixed
A degenerate shell element which is easily applicable to interpolation of tensorial components approach for 9-node
plate and shell analysis was first presented by Ahmad, and 16-node shell element.
Irons and Zienkiewicz.” This element was derived from a In the development of structural elements for the post-
three dimensional element by applying a so-called dege- buckling analysis, the consideration of large rotations in-
neration process. The classical Krichhoff hypothesis was troduces additional difficulties due to the non-vectorial
no longer fulfilled since out-of-plane shear strains were nature of finite rotations. In the conventional nonlinear
taken into account. This element and its numerous versions formulation for degenerate shell elements, the tangent
have been used for both linear and nonlinear problems. stiffness matrix is derived by assuming infinitesimal rotation
However, these elements suffer from shear locking and increments and the effect of large rotation increments is
membrane locking, considered only during the equilibrium iterations when
To overcome these phenomena, a number of authors calculating the stresses. The kinematics of large rotation
have developed elements based on the “assumed strain” was studied extensively by Argyris® and formulations that
concept. MacNeal®” used an assumed strain concept to take into account the effect of finite rotation increments on
develop a 4-node element and 6-node triangular element. the resulting stiffness have been presented by Surana.”
Huang and Hinton® and Huangw have proposed elements In this study, the element formulation is based on the
based on the use of assumed covariant transverse shear degenerate shell element and the assumed strain concept
strains referred to element natural coordinates, for membrane is adopted. In the elasto-plastic analysis, the return mapping
strains used a local Cartesian coordinate system to separate algorithm™ is applied to the anisotropic shell structures.
bending and membrane strains and mixed interpolated A finite element formulation accounting the second order

effects of finite rotations is presented in order to analyze
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Dynamic Nonlinear Analysis of Stiffened Shell Structures

2. A total Lagrangian formulation of degenerated
shell element considering large rotations

2.1 Effect of finite rotations

The position vector of any point inside the shell element
at time 7 can be expressed as,

X, =zn‘,Nk!Xik +L2Nkhklvsf:
k=1 2 k=1 (1)
where N, is the element shape function at node &, h,
is the shell thickness, and 'V; is a ‘normal’ vector at time .
The incremental displacement from the configuration at
time ¢ to the configuration at time r+ Ar is defined as,

— , u I~ Ay k iy
Ui___! A/Xl_Xi:__ZNkUik +52N’\hl\( AV}’;—V}II\) (2)
k=1 k=1

The changes in the direction cosines of the normal can

be expressed as

e ka _rvxk =_’V2kelk +[V1kef "izlvzk (9\“ +92k2) ©)

By substituting Eq. (3) into Eq. (2), the resulting incremental
displacement of any point inside the shell element can be
expressed by two terms,

Ui=U,+U] @

where [/, is the incremental displacement obtained by
considering only infinitesimal rotation increments(standard
linearization), and U ,I* is the extra term due to the quadratic

terms in the incremental displacement.

Hence,
U, = ; NU* +% ; Noh [ VieF Ve ) 5)
and

U =3 3N v o) ©)

In the usual formulation, the linear and nonlinear strain-
displacement transformation matrices used in the total
Lagrangian formulation may be obtained from Eq. (1) to
Eq. (6), except for the second order terms. However for
more accurate evaluation of the element geometric stiffness
of structural elements, the second order terms with respect

to the generalized rotational degree of freedom should be
added to the nonlinear strain terms of the incremental
equations.

2.2 incremental equilibrium equations

Virtual work principle for the general continuum is
expressed as(Bathe, 1996),

J'v l+A()’Sij '5(/+A(;E )OdV:HAtR :L 1+A1Ti51+A/Ui 04s 7
where
1+A 1 [ 1+A 1+A Ar

ve, =1V AU L) @

and 4S5, and "¢, are the second Piola-Kirchhoff stress
and the Green-Lagrange strain at time ¢+ At referred to the
configuration at time 0, respectively. The incremental dis-
placement components at time ¢ and ¢+ Ar are

HA,U,':[U,' + U,' + Ul" (9)

where U, denotes the first order terms of the displacement
parameters and U, denotes the second order terms due to
large rotations, and their sum consists of incremental
displacement. Substituting Eq. (9) into Eq. (8) and neglecting
higher order terms, the incremental equation of strains is

expressed as

_I+A

0Ei= o€y OEU 0€;itolli o€y (10)
where

() ij =l2( U + U + Ukl()U i+ Ukl(;U/\ /)

ol :Jf()Uk.i()Uk.j

() ‘7( U + U + Ukl()U + UAIO‘UA j) (11)
The ,¢; and 7, are the conventional linear and non-

linear Green-Lagrange strain increment, respectively, and

06,; is the linear strain increment due to U , . The incre-

mental equations of equilibrium for a general continuum
in the total Lagrangian formulation is expressed as

jv(“ :,uoeu&’ + S 60n0+(;sy6e;))dv
=R 1S, 8,°dV 12)

where the first term gives the element elastic stiffness and
the last term the element nodal force, whereas the geometric
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Dynamic Nonlinear Analysis of Stiffened Shell Structures

stiffness results from the contribution of nonlinear strains,

ie. the second and third terms.

2.3 Assumed strain finite element

According to Mindlin-type theories, the rotations are
independent of the displacements in both plates and shells.
When the finite element method is used in conjunction
with Mindlin-type formulations, the shear strain energy
predicted by the finite element analysis can be magnified
unreasonably even though the average value of the shear
strains over the area tends to zero. An artificial method
for the elimination of shear and membrane locking is to
interpolate new strain fields, so called ‘assumed strain
field’, from the strain values at the sampling points which
are appropriately located in individual elements. A number
of authors have developed elements based on the “assumed
strain’ concept. Among these studies, Huang and Hinton"
have proposed elements based on the use of assumed
covariant transverse shear strains referred to element natural
coordinate systems, for membrane strains used a local Car-
tesian coordinate system to separate bending and membrane
strains and mixed interpolated only the membrane part,
consequently two distinct coordinate systems are required
and some complicated routine is produced. Bucalem and
Bathe presented the elements based on the mixed inter-
polation of tensorial components(covariant strain terms)
approach for 9-node and 16-node shell element.

Assumed strain approach adopted in this study is similar
to Bathe’s method.”’ Assumed covariant strain field is used
to define new strain field and interpolated these strain
values to the nine Gauss points from the sampling points
(Fig. 1). After interpolation, all strain terms are transformed
to local coordinate system to calculate physical strains and

the membrane strains are extracted from bending strains
after transformation. The stiffness matrix terms, associated
with shear and membrane strains, are replaced by new
strain terms.

2.4 Modeling of stiffener element

In the general shell element, five degrees of freedom
are specified at each nodal point. But in the stiffened plate
and shell element or in the thin-walled structures where
the elements are connected with finite angle, six degrees
of freedom are required at the connection nodes.

In this study, all nodal points have five degree of freedom
except the connection points connecting the main elements
and stiffener elements. In the connection nodes, the ro-
tational degrees of freedom of the stiffener element are
referred to that of main shell elements. Therefore coordinate
transformation is required only for the stiffener element,
and no transformation is needed for the main shell
element.

3. Elasto-plastic analysis of shell structures

3.1 Stress-strain relations

The elastic constitutive relation for anisotropic material™
is used with an assumption that the reference system of
orthogonal axes is parallel to the principal material axis.
The generalized Von-Mises yield criterion is employed to
consider the anisotropic materials. The consistent elasto-
plastic tangent moduli(Simo and Taylor™", 1986) is applied
to anisotropic shell element, to define the relationship
between the incremental stress and strain.

The basic equations in elasto-plastic problems may be
summarized as follows

a=0.577..., b=0.744...

AS SA SA
a a b b d a .
[
(3) (6) é é o 6 ‘
b , (2) (4) (6) a (2) 4 a
] ° - > > r —
(2) (5)
b 2 ‘
-] -] @ -] o
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rt st

Fig. 1 Sampling points for the 9-node Lagrangian element
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1) incremental strain : dg = de‘ + dg”

2) elastic stress-strain relation : ¢ = De’

3) flow rule : de” =dAAc

4) yield function : ¥ =1g"Ac-102(e”)=0 (13)

where A and D are the anisotropic parameter and elasticity
matrix for anisotropic materials (Hinton and Owen(w)), re-
spectively.

The plastic strains **gr and "**'¢” are determined by
integration of the flow rule and hardening law over the
time step from ¢ to ¢+ A¢ and the ‘generalized midpoint
rule’ is used to integrate the flow rule. The detailed pro-
cedure deriving consistent elasto-plastic tangent muduli
based on Return mapping algorithm may be refered to (10).

3.2 Update algorithm

In the general material nonlinear analysis by Newton-
Raphson iteration method, the iteration process can be
divided into two parts. First is calculating the trial stress
using linearized tangential stiffness which corresponds to
the elastic predictor. Second is calculating exact stress state
with the appropriate yield condition which corresponds to
the plastic corrector. In the elastic predictor phase, the
quadratic convergence rate can be obtained by using the
consistent elasto-plastic tangent modulus rather than classical
elasto-plastic tangent modulus. Furthermore, the accuracy
of the solution can be obtained by using the return
mapping algorithm in the plastic corrector phase. The
second part of the algorithm defines a relaxation process
towards the yield surface often referred as return mapping.(n)

4. Nonlinear dynamic analysis of shell structures

4.1 Newmark method for dynamic nonlinear analysis

The time integration schemes for linear dynamic analysis
can also be employed in nonlinear dynamic response
calculations. For using Newmark method, the equilibrium

equations at time f+Ar can be rewritten as

MU +C U+ ™K"Y U="*R (14a)
where C is the Rayleigh damping matrix represented as
C=oM+B'K (14b)

This requires in nonlinear analysis that iteration step
should be performed. Using the modified Newton-Raphson

iteration,

M1+A/I"J+Cr+AtU+1KAU(i)=r+At R_1+A1F(i—l) (15)
and
r+AtU(i):/+AlU(i—l)+AU(i) (16)

where ““¥F“") are the element internal forces at the pre-
vious iteration step.

In the Newmark integration method, acceleration and
velocity vectors are assumed as

1+A/I'j =a0(/+At U—’U)—aZ'U—a3'U
1+A/U =a, (1+Al U_IU)_a4[U_a51U (17)

where @; are the integration constants defined as

oo _5

* oAr? ' aAr
1 1

a,=——- a,=—-1
oAt T 2x

a4=§-—1 a5=£[é—2j (18)
o 2la

Substituting (17) into (15), following equations are obtained
for the first iteration step.

IKAU(O):HA! ﬁ(n) (19)
and

‘K='K+a,M+4q,C
I RO=YR 4 Mg, U+a,’ U)+ Cla, U+a,’ ﬁ)—’F
(20)

For the next iteration steps, effective loads are replaced
by effective unbalance loads “**R'” defined as

1+Ar l’i(i)zwAtR _MHArU(i) _Cr+At U(i)_t+ArF(i) (21)
and the incremental equilibrium equations are
/KAU(i)=1+Atﬁ(i) (22)

Then, accelerations and velocities at time ¢+ Ar can be

obtained as

¥ = g AU=-a,' U-a,'U

g0 =g AU-a,' U—a,'U (23)

and the total increment of displacements are calculated
as (16).
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4.2 Dynamic analysis considering effects of support
acceleration

Dynamic stresses and deflections can be induced in a
structure not only by a time-varying applied load, but also
by motion of its support points. Important examples of
such excitation are the motions of a structure foundation
caused by an earthquake or motions of a equipment due
to vibrations of the building in which it is housed.

If the effect of support excitations is included, the dynamic
equilibrium equations in (14) can be rewritten as, at time
t+ At

M1+At['jl +C1+A1U+K1+A1U:x+AtR (24)
and
r+Art‘I,=r+Az I"J+1+Atﬂg (25)

where 4, represents the total accelerations of the mass
from the fixed reference axis and '** ﬂg the accelerations
by the support motion.

In general, the support motion is applied in a specific
direction. If the support motion is applied in x-direction,
the component of acceleration vector for node ;, ’*A’["J"g ,
can be constructed as

r+Ar['j; =0 H-Atu' (26)

t

where ""¥ii, is the ground acceleration at time £+ Az.

The dynamic equilibrium equation (24) can be rewritten as
Mr+Azl'j+Ct+ArU+Kr+A1U=r+A1R_Mr+Az [“Jg=t+Aleﬂ‘ (27)

Thus, the inertial forces caused by ground acceleration,
’*A’I;ig , can be treated a the external forces. Therefore,
replacing the load vector ““ R in (14) by “*R_, in (27),
linear and dynamic analysis including the effect of support
acceleration can be performed.

5. Numerical examples

For nonlinear analysis, the iterative Newton-Raphson
method is applied within admissible maximum iteration
until the following convergence condition is satisfied.

Q0P Y FD| <100+ Toler |'AP| 28)

whereis Toler the convergence tolerance given by the input
value and 0.1 is used in examples of this study.

5.1 Square plate subjected to suddenly applied load

A simply supported square plate with side-length L =10 in,
thickness 4 =0.5 in and material density P =0.259x10°1b-
sec’/in’. is subjected to a suddenly applied uniformly dis-
tributed load of 300 psi. The material properties of this

example are :

E=10x10 psi
v=03

G =38462x10° psi
G, =30000 psi
H'=00

In the time stepping solution, the time increment adopted
is 0.223x10* s which is % of the fundamental period of
the plate. A symmetric quadrant of the plate is modeled
using a 4X4 mesh.

Fig. 2 compares the central displacement time histories
when different through-thickness integration schemes are
used. And Table 1 shows the total iteration numbers
during 60 time steps. The amplitudes and the periods of
the vibration increase with the number of integration
points of layers adopted through the plate thickness. As

3.25

— ELASTIC prnay,

>
3.00 e BB 2 GP.{R) "
o E-P2GP. (HI
= E-P 4 GP. (R)
o E-P4GP.(H)
~= E-P 6 LAYR (R}
* E-P6LAYR(H)

2.75
2.50
2.25
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00

(x10)

Central Deflection

0.00

0.19  0.38

0.57 076 096 1.15 1.34
Time (x1000)

Fig. 2 Time history of central displacement for suddenly applied
square plate
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Table 1 Total iteration number during 60 time steps2

2 Gauss point 4 Gauss point 6 Layer
Classical | Present | Classical | Present | Classical | Present
method(H) | study(R) | method(H) | study(R) | method(H) | study(R)

100 | e 1B | & | 1% %

more Gauss points or layers through the thickness of a
structure are used, the results become more realistic. (H)
and (R) denote the Huang’s results" and the results from
present study using return mapping algorithm, respectively.
Resultantly Fig. 2 and Table 1 show that the present results
are quite close to the Huang's results, but the iteration
numbers to get the solution are considerably decreased by
using the return mapping algorithm.

5.2 Free vibration and dynamic analysis of cylindrical
shell

Free vibration analysis is performed for a circular cylinder
shell structure with vertical stiffeners or horizontal stiffeners
and without stiffeners. The cylinder is modeled with 16 x8
9-node shell element with radius R=50m, height H=200m,
and thickness f=0.5m. The vertical stiffeners are modeled
with 8x1 shell element and the horizontal stiffeners are
modeled with 16 X1 shell element with width W=5m and
thickness =0.5m for both vertical and horizontal stiffeners.
In all cases, the boundaries in the cylinder bottom surface
are fixed for translations and rotations. The material pro-
perties used for cylinder and stiffeners are as follows :
E=21x10"tonf/m’, v =03, P=08tonf - sec’/m"

Fig. 3 shows the shell models for each case. The natural
frequencies and corresponding mode shapes are given in
Table 2 and Fig. 4, respectively. In Table 2 the analysis
results of present study are compared with the results
from ABAQUS, where the cylinder is modeled with 32 %16
8node shell element and the vertical and horizontal stiffeners
are modeled with 16 X1 and 32 %1 shell element, respectively.
As shown in Table 2 and Fig. 4, the natural frequencies of
the cylinder with horizontal stiffeners are increased as the
stiffness of the structures is increased due to the stiffeners.
But the natural frequencies of the cylinder with vertical
stiffeners are decreased since the vertical stiffener is not
available for increasing the stiffness in radial direction,
only increasing the mass of the cylinder.

Fig. 5 shows the analysis results for El Centro earth-
quake load. As shown in Fig. 5 the responses of the stiffened
cylinders are larger than the response of the cylinder

without stiffener.

IIT\{\\H!!\\

(a) Without stiffener  (b) Vertical stiffener  (c) Horizontal stiffener

92}

Fig. 3 Cylinder shells with vertical and horizontal stiffeners

Table 2 Natural frequencies for cylinder shell

Without stiffener | Vertical stiffener | Horizontal stiffener

Mode {cycle/sec) (cycle/sec) (cycle/sec)
Number | Present Present Present
study ABAQUS study ABAQUS Study ABAQUS

0536 | 0526 | 0508 | 0498 | 0966 | 0934

0536 | 0526 | 0508 \ 0498 | 0966 | 0934

0743 | 0704 | 0680 1.776 1.740

0747 | 0743 | 0723 | 0718 1.776 1.740

oAl | =
o
3
N
N

0.783 | 0755 | 0723 | 0.718 1.789 1.770

Mode 1

Mode 2

Mode 5

()

(a) Without stiffener (b) With vertical stiffener (c) With horizontal stiffener

Fig. 4 First 5 mode shapes for cylindrical shell
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—— without stiffener

== with vertical stiffeners

----- with horizontal stiffeners
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o £
I=4 >
=2 f=1

Velocity
[
=

-20.0

600.0
400.0
00.0

~

(=3
=

>

200.0

Acceleration

-400.0

-600.0
0.0 2.0

4.0 6.0 8.0
Elapsed Time (sec)

{c)

Fig. 5 Response of cylinder shell under earthquake load

5.3 Dynamic buckling of cantilever plate

A simple cantilever plate with length L=40cm, height
H=4cm, thickness t=0.5cm and material density P =0.8kgf-
sec’/em’ is analyzed for suddenly applied axial load to
investigate dynamic buckling behavior. Fig. 6 shows the
undeformed and deformed shapes of cantilever plate for
maximum and minimum displacements of cantilever tip
end, resulted from the dynamic buckling behavior for a
suddenly applied axial load of 1.5KN slightly larger than
the static buckling load(1.35KN) of the cantilever. Fig. 7
shows the lateral displacements of the free end without
damping and Fig. 8 shows the same results for various
damping ratios. As shown in Fig. 7, if there is no damping
force lateral displacement of free end is oscillating with an
amplitude 274cm If there is a damping force, lateral displace-
ment of free end is converged to the lateral displacement
21.2cm for a static loading of 1.5KN, as shown in Fig. 8.
The lateral displacement is more rapidly converged to the
static displacement as the damping ratio is larger, as

expected.

P/ 1000 P

Fig. 6 Undeformed and deformed shape of cantilever plate

— Remove [mperfection Load
Maintain Imperfection Load

Displacements (cm)

-40 220

0 iy 20 n 40 50 60 R 1 20 30 40 50 60
Time (sec)

(b} Axial displacements

Time (sec)

(a) Lateral displacements

Fig. 7 Post-divergence behavior without damping
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(a a=01 B=00 b) a=02 B=00
30 30
B
20 20
£
2 10 10
=
) 0
0 20 40 60 0 20 40 60
Time (scc) Time (sec)
{c) a=03 £=00 d a=04 B=00

Fig. 8 Post-divergence behavior with various damping ratio

6. Conclusion

In this study the ultimate strength analysis, including
the large deformation and elasto-plastic analysis of shell
structures is preformed using the degenerate shell element.
The assumed strain concept is adopted to overcome locking
phenomena, which is the main defect of the displacement
based isoparametric finite element especially for thin shell
situation, and to eliminate the spurious zero energy modes
occurring when reduced or selective integration methods
are used. In geometric nonlinear analysis, more exact solutions

M5 M3Z (8@ HM19%) 2001.8
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are obtained by evaluating the total Green-Lagrangian strains
corresponding to total displacements and by including the
effect of second order rotation terms in the incremental
displacement field. In the elasto-plastic analysis, the return
mapping algorithm is applied to the anisotropic shell
structures. Through numerical examples, it is demonstrated
that the elasto-plastic behavior of thin plates under dynamic
loadings is effectively traced using Return mapping algorithm
and also, dynamic buckling behaviors of the damped cantilever
plate are accurately obtained under the suddenly applied
end load.
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