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An Empirical Test for the Combination
of Multiple Recursive Generators’
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Abstract

The Multiple Recursive Generator(lMRG) has been considered by many scholars as a
very' good random 'number generator. For the long period and excellent statistical
properties, the method of the combination with random number generators is used. In this
paper, we thodght the two-combined MRGs. Using the frequency and serial test, and runs
test, we studied the importance of the initial seeds likewise other random number
generators. ' ' ’
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1. Introduction

The ability to generate . satisfactory
sequences of random numbers is one of the
key links between Computer Science and
Statistics. Standard methods may no longer
be suitable for increasingly sophisticated uses,
such as in precision simulation studies. A
simulation of any system or process in which
there are inherently random components
requires a method of generating or obtaining
numbers that are random, in some sense. All
the randomness required by the simulation
model is simulated by various random
number generators whose output is assumed
to be a sequence of independent uniform
random variables, which is denoted "U(0,1)".
These random numbers are then transformed
as needed to simulate random variables from
different probability distributions.

‘But, the random variable in U(0,1) is an
mathematical abstraction. In . practice, there
are no true random variables. As of today,
from a prescribed mathematical formula but
satisfy different requirements as if they were
true random numbers', we géjn the sequence.
Such a sequence is called the pseudo-random
and .the program or procedure that produce
such a sequence is called pseudo-random
number generator. The most popular
algorithm for generating pseudo-random
numbers was suggested by Lehmer in 1949.
It is called the congruential methed. The
method relies on a sequence of integers that
are computed by one formula

m=g(m;_,, m;_, - )(mod M), 1

where a fixed deterministic function g of

previous m;_;,m; o,-, the modulo M are

prescribed integers. As pseudo-random numbers,
the fractions m,/M are used. In particularly,

if ‘g(m,'_l,»m,’_az,"')=dm,'_1+C , Where

a,c are given constants, we called it as a
linear congruential generator(LCG). In general
the LCG is probably the most widely used
and best understood kind of random-number
generator. Turning to small M, the length of
period reduces. On the other hand, if a long
period generator is implemented, then the
generation is slow. So there are many
alternative types. In order to the formula (1)
have the full period and good statistical
properties, the values of the parameter in a
function g must be chosen very carefully
[1,48]. In Section 2, we give the Multiple
Recursive  Generators[3,49,10] and  the
combined generator[59.11]. In particular, we

studied two combined multiple recursive
generators  which  were  designed by
L'Ecuyer[2]. We have interest to the

statistical properties of ‘generators.‘_ So we
have the empirical testl6] for the two
combined multiple recursive generators in
Section 3. o

2. A Combination of Multiple
Recursive Generators

In the formula (1), when
glmi_y, mi_g, -, mi_ )= aym;_1+ - +ami,
initial

where a;'s are constants and the

values m;_,, m;_5,**-,m;_, are not all zero.
We called them the gth-order multiple
recursive generators ( MRGs ). From the
finite field theory, the qth-order MRGs can
produce random numbers of full ' period

M -1

°
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if and - only if the ‘polynomial

A)y=x"—ax"'—--—~a, is a primitive

polynomial modulus M. Knuth{7] describes
the following conditions for testing the
primitivity modulo M :

(i) (—1)?"'a, is a primitive root modulo M,
(i) [x"mod Ax)ImodM=(—1)"qa,

(iii) degree {[x”*mod Ax)ImodM} > 0, for

each prime factor s = of 7, Wwhere
= (M—1)
(M—-1) -
Theoretically, there are exactly
#(M*—1)/k choices of (ay,+,a,) which

satisfy these conditions, where (M —1) is
the Euler function defined as number of
integers which is smaller than and relatively

prime to M*—1. For the simplest ‘case of
g=2 and the very popular modulus
M=2%"-1, around 5.74E17

candidates[4]. Hence a significant amount of
computation is involved in searching for

thére are

(ay, ", a,) which are able to produce

random numbers of full period.

To increase the period and try to get rid
of the regular ‘patterns dlsplayed by LCGs, it
has often’ been suggested that different
generators be combined to produce a hybrid
one. Such combination is often viewed as

completely heuristic  and is  sometimes
discouraged. But besides being - strongly
supported by  empirical  investigations,

combination has some theoretical support.
First, in most cases, the period of the hybrid
is much longer ‘than that of “each of its
components, and can be computed. Second,
there are theoretical results suggesting that
some forms of combined generators generally

have better statistical behavior. For instance,
:n=0}
and {y, :#=0} are combined elementwise to
{2z, :n=>0}, where

suppose two random sequences {x,

form a third sequence

2p=%Xp* ¥, and denotes some . binary
operator. Assume three sequences are defined
over the same finite set. Then under fairly
resonable  conditions, the : t-tuples of
successive values are more or at least as
much uniformly distributed in some sense for
the third sequence than for any of its two
constituents. .

In this paper, we think about the
combination of two MRGs, which was
developed and studied by L’Ecuyer, is- defined
by

my; =(ay,my -2~ (11,2m1,i—3)[m0d(232 —209)]
my,; = (ag, 1M ;) — Gz 9my ;—3)[mod (2% — 22853)]
Y; = (ml,i_ mz_i)[ mod(232—-209)]

U= |
where @, ;=1,403,580, 2, ,= 810, 728,
a5 1="521,612, a5,=1,370,589,
and has period of approximately .2}91 ( which

is about 3.1x10%) as well as excellent
statistical properties through dimension 32[2].
The advantage of the above generator is a
brief program, simple computatlons and a
huge period. In order to use this algorithm,
likewise using any other random gerierators,
we need the ‘seed vector with 6-elements
{mio, mi1,myz, Mmoo my1, mss}.

The choice of the initial seed vectors'in
random number generator could @ not be
determined by the theoretical basis. The
recommendation to -select initial values at
random is doubtful. In general, the initial seed

vectors could 'be chosen by empirical
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methods. To be sure, the careful selection of
the seeds is important to generate the
pseudo-random numbers. So, L'Ecuyer gave
the 10,000's seeds vector as related
header-file and asserted that the results have
excellent statistical properties. But, for the
empirical test to see the uniformity and
independence of the two combined-MRGs, we
obtained the different results. The test results
will be given in the next section.

3. The Empirical Tests

In this section, we practice the various
simulation to test the uniformity and
independence = of  distribution of the
corresponding pseudo-random numbers. And
all tests are related to the deterministic
interpretation of goodness-of-fit tests. In
facts, d-dimensional random points with
independent Cartesian coordinates
(r1o e 72 (Pas1 0 720, (Yogwn, 0, Y30,
are  uniformly distributed in the &
-dimensional unit cube at any d. This
property is necessary and sufficient for a
successful implementation of Monte Carlo
algorithms with constructive dimension . To
test whether the null hypothesis H, : the
sequences are distributed
uniformly on [0,1]% is true or not, divide
[0,1] into k subintervals of equal size and let
£ i i, D€ the number of y;’s having first

above d-tuples

component in  subinterval j;, second

component in subinterval j,, etc. If we let
_ & N\?
x%l__ﬁ 1121".' jdgl(fjl'iz'm'jd_?) ’

then x?v will have an approximate chi-square

distribution with degree of freedom k£%—1

under the null hypothesis H, is true. The

smaller is xﬁ, the better is the agreement of
empirical values with theoretical ones. Large
values x%, correspond to small p-values. So,

too small values of p-values indicate that the
experimental data contradicts to our
uniformity  hypothesis. Firstly, for the
uniformity, we have tested for the case d=1,
which is called the frequency test, and
d=2,3,4, which are called the serial tests. For
modeling different problems, different
quantities of pseudo-random numbers are
necessary. Therefore, we have simulated
various initial seeds of a sequence with

lengths N= N_,;x2° wheres=0,1,2, ---,14,
N,=600,300,250,150,

d=1,2,3, and 4, respectively. And let k the
number of subintervals of [0,1] be as 16, 8, 5,
and 4 with respect to the d-1, 2, 3, and 4.

Secondly, for the test of independence, we
have proceeded the run test. Let »; be the

number of runs of length [ in a sequence of

N=600x%2°, s=0,1,2,---,14. For
an independent sequence, the expected values

according to the

where

of m; for runs up and down are given by

—(ﬁz_‘?))—![N(i2+3i+ -

(B+3:2—i—4)], i<N-2,

E( n,’) =
4. i=N-1,
Under the null hypothesis H,: the

pseudo-random numbers which are generated
by the two combined MRG is distributed
independently. We know
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pm T = m)® | (5" = b))’

N 1= nh; nﬁs' ’
where #5° is the number of runs with
lengths =5 and

means the total number of runs, and the
probabilities are p;= E(n,), for i=1,2,--,

n=n;+ ny+ n3+ ny+ ng

N—1,will have an approximate chi-square
distribution with degree of freedom 4.

For all tests, we use @,= max, x%, for

i=1, which means the frequency test, for
1= 2,3, and4, which mean the 2, ,3, and 4
dimensional serial tests, respectively, for i=5,
which means the run test as the criteria.

When all values of @; are less than

quantiles @}, 7=1,2,---,5, with respect to
the three different p-values in Table 1
previously, we will say that the
pseudo-random numbers generated by
two-combined MRG are distributed uniformly

and independently on [0,1].

Table 1. xZ quantiles.
p-value
Tests
0.1 0.05 0.01

Frequency 22.3 25.0 30.6
Serial:2-dim 77.7 825 92.0

Serial:3-dim 145 151 163

Serial:4-dim 284 293 310
Run 7.78 9.49 13.28

"The recommendation of L’'Ecuyer was

arbitrarily to select an initial value in 10,000's
seed vectors which was proposed in his
header-file. In this paper, we choose p-value
as 0.1. We have tested arbitrary 100
sequences initial seed vectors among 10,000.

And we selected the seed vectors which meet
criteria in all five tests at the same time.
The results of the above tests are terrible.
The only one 5230th seed vector (1338960199,
3947731640, 1058186044, 1875415108,
1948201518, 3217931286) passed the all five
tests. In Figure 1, for each sequences with

5230th seed vector, all the probabilities P(x%),

P = [ Anas An s a

where

probability density xz with degree of freedom
k*—1, are shown. And the

®;= max , x4 and P;= min P(¥%) of each

results

tests are described in Table 2. For all
i=1,2,--,5, we see that @; < @]
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Table 2. Results of Test with 5230th initial

Run Test

seed vector '
’ ;= max , rx
, Tests . 5
2\08 ( min P(x3) )
Zost 19.6557
§ w ) Frequency (0.19)
(o]
Sl 1o 75.4642
. | A Serial : 2-dim (0.14)
1 o 144.329
0 2 4 6 8 10 12 14 Serial : 3-dim (0.10)
S
e 283.04
Serial : 4-dim 0.15)
. 7.6133
Serid Test { dm=3)
{dm Run Test ©0.11)
’ .

08 Continuously, we proceeded the five
£ 06 empirical tests for all given 10,000’s seed
§ ' vectors. It required the expand test time. We
£04 found out the only 44 of 10,000 passed all

02t five tests. Table 3 shows the result of tests.

0 i 1 1 1 1 L .
o 5 4 6 8 10 12 14 Taple 3. The list of numt‘)ers"among. 10,000
s » which passed the all five  test in the
L’Ecuyer’s header-file
Soid Tet(dnr4) No. of seed vectors

1 74 256 315 420

® 1007 . 1373 1385 1561
z | 2069 2495 2744 | 2858
?gm 3139 4081 4255 | 4416
® ol 4950 5147 5214 5230

N N 5376 5798 6020 6090

0 2z 4 6 8 0 B ® 6105 6118 6123 6154
s 6246 6537 6921 6934
Figure 1. Al five tests for the 5230th seed 89 | 0 | 872 | 83
’ 8983 8990 9329 - 9424
9542 9568 9718 9998
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4. Conclusions

In simulation studies, the quality of the
random number generator adopted has a
major effect on the results derived. An ideal
random number generator should possess at
least the properties of long period, good

lattice  structure, and sound statistical
properties. Comparing generators having
approximately the same period length,

combined MRGs are the fastest good-quality
MRGs available up to date.

These combined MRG possess good
theoretical properties in terms of their period
length and the quality of their lattice
structure, and behave well in empirical
statistical tests. But the choice of the initial
seed vectors in random number generator is
an 1mportant factor to generate the good
random numbers.

Our test results mean that the statistical
properties of the random numbers are
dependent to the selection of the initial seed
vectors. The 10000's seed vectors which were
given by L’Ecuyer are not enough to use as
a proper initial seed vectors. As a future
theme, we have plan to search the initial
seeds vectors and the parameters of recursive
function g in (1) for a good generator of
this form.
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