Noradrenergic Modulation of Spontaneous Inhibitory Postsynaptic Currents in the Hypothalamic Paraventricular Nucleus

  • Lee, Long-Hwa (Department of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University) ;
  • Chong, Won-Ee (Department of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Ki-Ho (Department of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University) ;
  • Park, Jin-Bong (Department of Physiology, College of Medicine Chungnam National University) ;
  • Ryu, Pan-Dong (Department of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University)
  • Published : 2002.04.21

Abstract

Previous studies have suggested that brain stem noradrenergic inputs differentially modulate neurons in the paraventricular nucleus (PVN). Here, we compared the effects of norepinephrine (NE) on spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs) in identified PVN neurons using slice patch technique. In 17 of 18 type I neurons, NE $(30{\sim}100{\mu}M)$ reversibly decreased sIPSC frequency to $41{\pm}7%$ of the baseline value $(4.4{\pm}0.8\;Hz,\;p<0.001).$ This effect was blocked by yohimbine $(2{\sim}20{\mu}M),$ an ${\alpha}_2-adrenoceptor$ antagonist and mimicked by clonidine $(50{\mu}M),$ an ${\alpha}_2-adrenoceptor$ agonist. In contrast, NE increased sIPSC frequency to $248{\pm}32%$ of the control $(3.06{\pm}0.37\;Hz,\;p<0.001)$ in 31 of 54 type II neurons, but decreased the frequency to $41{\pm}7$ of the control $(5.5{\pm}1.3\;Hz)$ in the rest of type II neurons (p<0.001). In both types of PVN neurons, NE did not affect the mean amplitude and decay time constant of sIPSCs. In addition, membrane input resistance and amplitude of sIPSC of type I neurons were larger than those of type II neurons tested (1209 vs. 736 $M{\Omega},$ p<0.001; 110 vs. 81 pS, p<0.001). The results suggest that noradrenergic modulation of inhibitory synaptic transmission in the PVN decreases the neuronal excitability in most type I neurons via ${\alpha}_2-adrenoceptor,$ however, either increases in about 60% or decreases in 40% of type II neurons.

Keywords

References

  1. Armstrong WE. Hypothalamic supraoptic and paraventricular nuclei. In: Paxinos G, ed, The Rat Nervous System. 2nd ed. Academic press, San Diego, pp 377-390, 1995
  2. Berger AJ, Bayliss DA, Viana F. Development of hypoglossal motoneurons. J Appl Physiol 81: 1039-1048, 1996 https://doi.org/10.1152/jappl.1996.81.3.1039
  3. Boudaba C, Schrader LA, Tasker JG. Physiological evidence for local excitatory synaptic circuits in the rat hypothalamus. J Neurophysiol 77: 3396-3400, 1997 https://doi.org/10.1152/jn.1997.77.6.3396
  4. Boudaba C, Szabo K, Tasker JG. Physiological mapping of local inhibitory inputs to the hypothalamic paraventricular nucleus. J Neurosci 16: 7151-7160, 1996
  5. Cechetto DF, Saper CB. Neurochemical organization of the hypothalamic projection to the spinal cord in the rat. J Comp Neurol 272: 579-604, 1988 https://doi.org/10.1002/cne.902720410
  6. Cherubini E, Conti F. Generating diversity at GABAergic synapses. Trends Neurosci 24: 155-162, 2001 https://doi.org/10.1016/S0166-2236(00)01724-0
  7. Chong W, Lee LH, Ryu PD. Two subtypes of PVN neurons have different responsiveness to noradrenaline in the rat. Exp Neurobiol 10 (Suppl): 128, 2001
  8. Cui LN, Coderre E, Renaud LP. GABA(B) presynaptically modulates suprachiasmatic input to hypothalamic paraventricular magnocellular neurons. Am J Physiol Regul Integr Comp Physiol 278: R1210-R1216, 2000
  9. Cui LN, Coderre E, Renaud LP. Glutamate and GABA mediate suprachiasmatic nucleus inputs to spinal-projecting paraventricular neurons. Am J Physiol Regul Integr Comp Physiol 281: R1283-R1289, 2001
  10. Cunningham ET Jr, Sawchenko PE. Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol 274: 60-76, 1988 https://doi.org/10.1002/cne.902740107
  11. Daftary SS, Boudaba C, Szabo K, Tasker JG. Noradrenergic excitation of magnocellular neurons in the rat hypothalamic paraventricular nucleus via intranuclear glutamatergic circuits. J Neurosci 18: 10619-10628, 1998
  12. Daftary SS, Boudaba C, Tasker JG. Noradrenergic regulation of parvocellular neurons in the rat hypothalamic paraventricular nucleus. Neuroscience 96: 743-751, 2000 https://doi.org/10.1016/S0306-4522(00)00003-8
  13. Decavel C, van den Pol AN. Converging GABA- and glutamateimmunoreactive axons make synaptic contact with identified hypothalamic neurosecretory neurons. J Comp Neurol 316: 104- 116, 1992 https://doi.org/10.1002/cne.903160109
  14. Ebihara H, Kawasaki H, Nakamura S, Takasaki K, Wada A. Pressor response to microinjection of clonidine into the hypothalamic paraventricular nucleus in conscious rats. Brain Res 624: 44-52, 1993 https://doi.org/10.1016/0006-8993(93)90058-U
  15. Ferguson AV, Latchford KJ. Local circuitry regulates the excitability of rat neurohypophysial neurones. Exp Physiol 85 Spec No: 153S-161S, 2000
  16. Hallbeck M, Larhammar D, Blomqvist A. Neuropeptide expression in rat paraventricular hypothalamic neurons that project to the spinal cord. J Comp Neurol 433: 222-238, 2001 https://doi.org/10.1002/cne.1137
  17. Han SK, Lee IS, Murase K, Ryu PD. Norepinephrine excites and inhibits GABAergic transmission in parvocellular neurons of the rat hypothalamic paraventricular nucleus. J Neurophysiol 87(5): (in press), 2002
  18. Harland D, Gardiner SM, Bennett T. Paraventricular nucleus injections of noradrenaline: cardiovascular effects in conscious Long-Evans and Brattleboro rats. Brain Res 496: 14-24, 1989 https://doi.org/10.1016/0006-8993(89)91047-0
  19. Herbison AE. Noradrenergic regulation of cyclic GnRH secretion. Rev Reprod 2: 1-6, 1997 https://doi.org/10.1530/ror.0.0020001
  20. Hermes ML, Ruijter JM, Klop A, Buijs RM, Renaud LP. Vasopressin increases GABAergic inhibition of rat hypothalamic paraventricular nucleus neurons in vitro. J Neurophysiol 83: 705- 711, 2000 https://doi.org/10.1152/jn.2000.83.2.705
  21. Hoffman NW, Tasker JG, Dudek FE. Immunohistochemical differentiation of electrophysiologically defined neuronal populations in the region of the rat hypothalamic paraventricular nucleus. J Comp Neurol 307: 405-416, 1991 https://doi.org/10.1002/cne.903070306
  22. Horn EM, Shonis CA, Holzwarth MA, Waldrop TG. Decrease in glutamic acid decarboxylase level in the hypothalamus of spontaneously hypertensive rats. J Hypertens 16: 625-633, 1998 https://doi.org/10.1097/00004872-199816050-00010
  23. Inenaga K, Dyball RE, Okuya S, Yamashita H. Characterization of hypothalamic noradrenaline receptors in the supraoptic nucleus and periventricular region of the paraventricular nucleus of mice in vitro. Brain Res 369: 37-47, 1986 https://doi.org/10.1016/0006-8993(86)90511-1
  24. Kim YI, Dudley CA, Moss RL. Re-evaluation of the effects of noradrenaline on the single-unit activity of paraventricular neurosecretory neurons. Neurosci Lett 97: 103-110, 1989 https://doi.org/10.1016/0304-3940(89)90147-X
  25. Kunkler PE, Hwang BH. Lower GABA$_A$ receptor binding in the amygdala and hypothalamus of spontaneously hypertensive rats. Brain Res Bull 36: 57-61, 1995 https://doi.org/10.1016/0361-9230(94)00164-V
  26. Lee HS, Han SK, Chong W, Ryu PD. Activatioon of metabotropic glutamate receptors inhibits GABAergic transmission in the rat subfornical organ. Neuroscience 102: 401-411, 2001 https://doi.org/10.1016/S0306-4522(00)00490-5
  27. Leng G, Brown CH, Russell JA. Physiological pathways regulating the activity of magnocellular neurosecretory cells. Prog Neurobiol 57: 625-655, 1999 https://doi.org/10.1016/S0301-0082(98)00072-0
  28. Li Z, Ferguson AV. Electrophysiological properties of paraventricular magnocellular neurons in rat brain slices: modulation of IA by angiotensin II. Neuroscience 71: 133-145, 1996 https://doi.org/10.1016/0306-4522(95)00434-3
  29. Luther JA, Halmos KC, Tasker JG. A slow transient potassium current expressed in a subset of neurosecretory neurons of the hypothalamic paraventricular nucleus. J Neurophysiol 84: 1814- 1825, 2000 https://doi.org/10.1152/jn.2000.84.4.1814
  30. Luther JA, Tasker JG. Voltage-gated currents distinguish parvocellular from magnocellular neurones in the rat hypothalamic paraventricular nucleus. J Physiol (Lond) 523: 193-209, 2000 https://doi.org/10.1111/j.1469-7793.2000.t01-1-00193.x
  31. Martin DS, Segura T, Haywood JR. Cardiovascular responses to bicuculline in the paraventricular nucleus of the rat. Hyper tension 18: 48-55, 1991
  32. Moos FC. GABA-induced facilitation of the periodic bursting activity of oxytocin neurones in suckled rats. J Physiol (Lond) 488: 103-114, 1995 https://doi.org/10.1113/jphysiol.1995.sp020949
  33. Neher, E. Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol 207: 123-131, 1992 https://doi.org/10.1016/0076-6879(92)07008-C
  34. Nunez-Abades PA, Pattillo JM, Hodgson TM, Cameron WE. Role of synaptic inputs in determining input resistance of developing brain stem motoneurons. J Neurophysiol 84: 2317-2329, 2000 https://doi.org/10.1152/jn.2000.84.5.2317
  35. Nusser Z, Cull-Candy S, Farrant M. Differences in synaptic GABA (A) receptor number underlie variation in GABA mini amplitude. Neuron 19: 697-709, 1997 https://doi.org/10.1016/S0896-6273(00)80382-7
  36. Pacak K, Palkovits M, Kopin IJ, Goldstein DS. Stress-induced noradrenaline release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: in vivo microdialysis studies. Front Neuroendocrinol 16: 89-150, 1995 https://doi.org/10.1006/frne.1995.1004
  37. Plotsky PM, Cunningham ET Jr, Widmaier EP. Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr Rev 10: 437-458, 1989 https://doi.org/10.1210/edrv-10-4-437
  38. Roland BL, Sawchenko PE. Local origins of some GABAergic projections to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J Comp Neurol 332: 123-143, 1993 https://doi.org/10.1002/cne.903320109
  39. Sawchenko PE, Swanson LW. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res 257: 275-325, 1982
  40. Spergel DJ, Kruth U, Shimshek DR, Sprengel R, Seeburg PH. Using reporter genes to label selected neuronal populations in transgenic mice for gene promoter, anatomical, and physiological studies. Prog Neurobiol 63: 673-686, 2001 https://doi.org/10.1016/S0301-0082(00)00038-1
  41. Stern JE, Armstrong WE. Electrophysiological differences between oxytocin and vasopressin neurones recorded from female rats in vitro. J Physiol (Lond) 488: 701-708, 1995 https://doi.org/10.1113/jphysiol.1995.sp021001
  42. Stern JE. Electrophysiological and morphological properties of preautonomic neurones in the rat hypothalamic paraventricular nucleus. J Physiol (Lond) 537: 161-177, 2001 https://doi.org/10.1111/j.1469-7793.2001.0161k.x
  43. Swanson LW, Sawchenko PE. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6: 269-324, 1983 https://doi.org/10.1146/annurev.ne.06.030183.001413
  44. Swanson LW, Sawchenko PE. Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31: 410-417, 1980 https://doi.org/10.1159/000123111
  45. Tasker JG, Dudek FE. Electrophysiological properties of neurones in the region of the paraventricular nucleus in slices of rat hypothalamus. J Physiol (Lond) 434: 271-293, 1991 https://doi.org/10.1113/jphysiol.1991.sp018469
  46. Tasker JG, Dudek FE. Local inhibitory synaptic inputs to neurones of the paraventricular nucleus in slices of rat hypothalamus. J Physiol (Lond) 469: 179-192, 1993 https://doi.org/10.1113/jphysiol.1993.sp019810
  47. Viana F, Bayliss DA, Berger AJ. Postnatal changes in rat hypoglossal motoneuron membrane properties. Neuroscience 59: 131- 148, 1994 https://doi.org/10.1016/0306-4522(94)90105-8
  48. Wang YF, Shibuya I, Kabashima N, Setiadji VS, Isse T, Ueta Y, Yamashita H. Inhibition of spontaneous inhibitory postsynaptic currents (IPSC) by noradrenaline in rat supraoptic neurons through presynaptic alpha2- adrenoceptors. Brain Res 807: 61- 69, 1998 https://doi.org/10.1016/S0006-8993(98)00732-X
  49. Whitnall MH. Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 40: 573- 629, 1993 https://doi.org/10.1016/0301-0082(93)90035-Q
  50. Zhang K, Patel KP. Effect of nitric oxide within the paraventricular nucleus on renal sympathetic nerve discharge: role of GABA. Am J Physiol 275: R728-R734, 1998