An Ambient Pore Pressure and Rigidity Index from Early Part of Piezocone Dissipation Test

Kim, Young-Sang

Abstract

This paper describes a systematic way of simultaneously identifying the ambient pore pressure and the rigidity index (=G/s_n) of soil by applying an optimization technique to the early part of piezocone dissipation test result. An analytical solution developed by Randolph & Wroth(1979) was implemented in normalized form to express the build-up and dissipation of excess pore pressures around a piezocone as a function of the rigidity index. An ambient pore pressure and optimal rigidity index were determined by minimizing the differences between theoretical and measured excess pore pressure curves using optimization technique. The effectiveness of the proposed back-analysis method was examined against the well-documented performance of piezocone dissipation tests(Tanaka & Sakagami, 1989), from the viewpoints of proper determination of selected target parameters and saving of test duration. It is shown that the proposed back-analysis method can evaluate properly the ambient pore pressure and the rigidity index by using only the early phase of the dissipation test data. Also, it is shown that the proposed back-analysis method permits the horizontal coefficient of consolidation to be identified rationally. Consideration for strain level of back-analyzed rigidity index shows that it corresponds to at least intermediate to large strain level.

요 지

본 논문은 적재적하기를 이용하여 현장에서 수행된 피에조콘 소산시험의 초기 경향으로부터 평형간극수압과 지반의 강성지수(G/s_n)를 역행식하는 기법에 관하여 기술하였다. 피에조콘 펌입으로 인해 콘 주변에 발생된 초기 과잉간극수압의 크기 및 분포, 그리고 연속된 간극수압 소산과정은 Randolph & Wroth(1979)가 제안한 해석적 해를 이용하여 지반의 강성지수의 함수로 표현되었다. 제안된 기법에서는 주어진 강성지수에 대해 정규화 된 이론 소산곡선과 평형간극수압으로 정규화 된 피에조콘 관측 소산곡선이 가장 일치하도록 하는 평형간극수압과 지반의 강성지수가 적재적 기법을 이용하여 결정되었다. 제안된 기법은 압밀이 진행중인 지반에서 관측된 피에조콘 소산시험 결과(Tanaka & Sakagami, 1989) 해석에 적용하였고 역행식된 평형간극수압과 현장에서 관측된 평형간극수압의 크기를 비교하였다. 또한 제안된 기법으로 얻어진 지반의 강성지수와 평형간극수압의 밑받으로 수평압밀계수를 추정하였으며 일차원 압밀실험 결과와 비교하였다. 그 결과 제안된 기법이 지반에 적합하는 평형간극수압의 크기를 매우 정확하게 예측할 수 있었고 역행식된 강성지수를 이용한 압밀계수의 추정이 타당함을 알 수 있었다. 또한 얻어진 강성지수의 변형 물수압에 관한 검토결과 피에조콘 해석을 위한 강성지수는 중간 또는 대변형 상태의 변형상태에 해당하는 값을 사용하는 것이 타당한 것으로 판단되었다.
1. 서 론

피에조존 소산시험으로부터 압밀특성을 추정하기 위해 해서는시험위치의정확한정수압상태와진반의적절한강성지수가요구된다.그러나,대상지반압밀진행중이라지형적인원인에의하여파압수가존재할경우정수압이외에추가적인잔류간극수압이존재하게되며평행간극수압은정수압과잔류간극수압의합으로나타나며피에조존 해석시이를무시할경우해석상오류를포함하게된다(Baligh & Levadoux, 1980).

이러한경우피에조존을 wurteil하여관입시발생한파인간극수압이완전히수렴할때까지소산시험을수행함으로써시험위치의평행간극수압을확인할수있는것으나소산과정없이수렴될때까지소산시기는때로길고특히투수계수가작은편도지반의경우에는집합에걸친소산소부분을불보람완전한수렴예도미약한경우도있어서시간과비용면에서비효율적이다.이

를개선하기위한황태진과김철웅(1997)은직단침하관리시스템 방안설계,호시노법,아사오카법을이용하여피에조존소산시험관측결과를해석함으로써최종

평형간극수압의수렴결과에관한연구를수행하였고이중호시노법이사용가능한것으로평가한바있다.국외에서는Tanaka & Sakagami(1989)가지반압밀진행중이어져정수압이외의잔류간극수압이존재하는경우,피에조존관입시판측되는간극수압은정수압보정,관입으로유발된전단에의한보정,그리고

잔류간극수압보정으로구성된다고주장하고소산시험이어진관입시판측된간극수압으로부터잔류간

극수압을예측하는실을다음과같이제안하였다.

\[\Delta u_c = u_{\text{max}} - \Delta u - u_0 \]

여기서, \(\Delta u_c \): 잔류간극수압, \(u_{\text{max}} \): 관입간극수압, \(\Delta u \): 관입전에의한보정, \(u_0 \): 정수압

또한,Rust & Clayton(1999)는강성지수(\(I_R = G_s / G_m \))가 100인지반에대해Randolph & Wroth(1979)의정화

된형태의해석적해방법을이용하여소산시험으로부터정수압결정연구를수행하였으며이를Tailing

Dam에서수행된피에조존소산시험에서적용한바있다.

한편,지반의전단탄성계수와비마수전단강도의비

로정의되는강성지수(\(I_R = G_s / G_m \))는공동확장이론과변형

풀방정식을이용하는해석분야에서 중요한요소로발

독지력의란정의에도피에조존을이용한압밀계수 및

비마수전단강도해석등다양한분야에요구된다.그

러나,알려진바와같이 큰관입시수면에유발되

는다양한수면의변형률분포와전단탄성계수의변형

률의존성(strain dependency)은큰해석문제에있어서

variably전단탄성계수의설계를 어렵게 한다.최근

Danziger 등(1997), Schnaid 등(1997)은다양한변형률

수준에서의전단탄성계수를이용한압밀계수결정

과압밀시험결과의비교함으로써\(G_m/\text{당적응력의}

50\%에대응하는응력의전단탄성계수\)가타당함을주

장하였다.또한비마수전단강도도지반적의고유한값

이아니면전단속도(strain rate), 파임밀비, 그리고변형

률연화등에영향을받고수행되는시험법에따라

2배이상증가하는값으로이로인해강성지수의결

정은더욱어려워진다(Baligh & Levadoux, 1980).

본논문에서는피에조존소산시험의초기소산과정에서

최적해석법을적용함으로써시험이수행되는위치

의평형간극수압과지반의강성지수를동시에예측

하는기법을제안한다.제안한방법은압밀전행중

연약한지반현장에서수행된피에조존소산시험결과의해석에

적용하였으며예측된평형간극수압과현장

에서판측된평형간극수압을비교하였다.또한해석

된평형간극수압과최적강성지수를바탕으로수평압밀

계수를추정하였으며그결과를일차압밀시험으로

어떤압밀계수값과비교하였다.전술한바와같이강

성지수는사용된전단탄성계수의변형률수준에하여

그값이달라지므로본연구에서제안된기법으로예측

된강성지수의변형률수준에대하여검토하고피에조존

해석에적절한변형률수준에대하여토론하였다.

2. 피에조존 소산시험에 대한 해석적 해

Randolph & Wroth(1979)는그림1과같이실현됨

관입법의관입으로주변지반에발생하는파일간극수
압(\(u_o\))과 반경방향 변형(outward radial movement, \(\xi\))을 예측하는 해석적인 해를 제안하였다. 이들은 무한염역을 대상으로 수행된 기존의 해석과 달리 피밀간극수압의 소산과정 중 피밀간극수압이 도달할 때 까지는 그 이상에 피밀간극수압이 존재하지 않는 특정 반경(\(r^*\))을 도입하였고 그 크기를 소성영역(\(R\))의 5~10배로 제한하였다. 소성영역 내에 로그분포로 유발되는 초기 피밀간극수압의 분포(식 (1))에 대하여 시간에 따른 피밀간극수압 소산의 해석적 해는 식 (2)와 같이 배설함수(Bessel function)로 표현되며 가정된 바(식 (3))와 같이 특정반경 \(r^*\) 이상에는 피밀간극수압이 존재하지 않는다. 반경방향 변형 \(\xi\)에 대한 해는 Randolph & Wroth (1979)에 의해 제시되었다.

\[
u = 2s\ln(R/r), \quad t = 0 \quad (1)
\]

\[
u = \sum_{n=1}^{\infty} B_n e^{-\alpha_n r^2} C_n(\alpha_n r), \quad r_e \leq r \leq r^* \quad (2)
\]

\[
u = 0, \quad r > r^* \quad (3)
\]

여기서, \(B_n = \frac{4s}{\lambda_n^2} \left[C_n(\alpha_n R) - C_n(\alpha_n R) \right]^2 C_n(\alpha_n r) - \alpha_n^2 C_n(\alpha_n r) \right]^2 C_n(\alpha_n r) - \alpha_n^2 C_n(\alpha_n r)
\]

\(J_n(\alpha_n r) + \mu_n Y_n(\alpha_n r)\) \(J_1(\alpha_n r) + \mu_n Y_1(\alpha_n r)\) \(J_2(\alpha_n r) + \mu_n Y_2(\alpha_n r)\) 식 2와 식 3은 배설함수(Bessel functions of first and second kind); \(s, r_e, r^*\) 실린더형 관계변의 반경(여기서는, 파되초반 반경); \(\mu_n\) 배설수방향각도.

위 변수들 중 \(\lambda_n\)와 \(\mu_n\)는 다음의 경계조건(식 (4), (5))으로부터 결정될 수 있으며 배설함수의 특성 상 무한히 많은 해가 존재하나 Randolph & Wroth(1979)에 의하여 처음 50개의 해만을 이용함으로써도 충분한 정도(accuracy)를 얻을 수 있음이 증명되었다.

\[\xi = 0 \text{ at } r = r_e \text{ for } t \geq 0 \quad (4)\]

\[u_e = 0 \text{ at } r = r^* \quad (5)\]

그러나, 이들 50개의 \(\lambda_n\)와 \(\mu_n\) 값 중에 증폭된 해가 존재하거나 확인되는 경우가 발생하지 않도록 주의하여야 하며 본 연구에서는 Newton 반복법을 사용하여 초기 50개의 해를 효율적으로 정확히 산출하도록 하였다. 대표적인 특정반경 \(r^*\)에 대한 해는 Levedoux(1980)에 소개되어 있다. 식 (2)에 포함된 시간 \(t\)을 식 (6)과 같이 정의되는 정규화 된 무차원 시간 \(T\)로 대체하고 시간계수 \(T=0\)에서의 초기 피밀간극수압(\(u_0\))로 피밀간극수압 \(u_t\)을 정규화함으로써 이론시간계수와 정규화 된 피밀간극수압 \(T=0\) 관계가 간단히 유도될 수 있다.

\[
T = \frac{c \cdot t}{r^2_o} \quad (6)
\]

\[
U_T = \frac{u_e}{u_0} = \frac{\sum_{n=1}^{\infty} B_n e^{-\alpha_n^2 T} C_n(\alpha_n r)}{\sum_{n=1}^{\infty} B_n C_n(\alpha_n r)} \quad (7)
\]

여기서, \(C_n(\alpha_n r) = J_1(\alpha_n r) + \mu_n Y_1(\alpha_n r), n = 1, 2, 3, \ldots, 50\)

이 때, 식 (7)에 포함된 변수 \(\lambda_n\)와 \(\mu_n\)은 특정반경 \(r^*\)에 서의 경계조건(식 (5))에 관련하여 결정되며, 특정반경 \(r^*\)의 크기는 강성지수에 따른 소성영역의 5~10배이므로 정규화 된 이론소산곡선(식 (7))은 결국 강성지수 \(I_k\)에 의존된다. 대표적인 강성지수에 대한 이론해는 그림 2와 같다. Rust & Clayton(1999)은 그림 2의 Randolph & Wroth(1979) 해 중에서 특정 강성지수 \(I_k=100\)인 경우의 이론소산곡선을 기준으로 편향된 피밀간극수압 곡선을 반복적인 방법으로 일치시킴으로써 평형간극수압

![그림 1. 실린더형 관계체 주변의 초기 간극수압 분포 (Randolph & Wroth, 1979)](image1)

![그림 2. 강성지수에 따른 이론적인 피밀간극수압 소산곡선](image2)

3. 피에조콘 소산시험에서 관측된 간극수압 해석법

\(u(t) \)을 현저 피에조콘 소산시험으로부터 관측된 시간 \(t \)에서의 관측 간극수압이라 하고 \(u_i \)을 그 위치에서의 정수압이라 하면 일반적으로 피에조콘 해석 시 이용되는 정규화된 과정간극수압 \(U \)는 초기 과정간극수압에 대한 시간 \(t \)에서의 과정간극수압의 비로 다음 식 (8)과 같이 정의된다.

\[
U = \frac{u(t)}{u_i} = \frac{u(t) - u_s}{u_i - u_o} \tag{8}
\]

과정간극수압 비 \(U \)는 정의에 따라 \(t=0 \)일 때 (즉, \(u(t) = u_0 \)인 값) 가 가며 과정간극수압이 모두 소산되어 간극수압 \(u(t) \)이 정수압 \(u_i \)에 도달하게 되면 \(U=0 \)이 된다.

4. 최적화문제로의 정식화와 수평압일계수 추정

형간극수압과 강성지수는 알고 있는 값으로 전체되었으며 본 연구에서는 이러한 값들의 역해석을 목표로 하고 있어, 여기서 결과는 기존의 연구결과를 보다 의미있게 할 것으로 사료된다.

평형간극수압과 강성지수의 역해석을 위한 최적화문제의 정식화는 다음 식 (9)와 같이 정의되는 목적함수를 최소화하는 문제로 표현될 수 있다.

\[
f(x) = \sum_{i=1}^{N} (U_i^s - U_i) \rightarrow \text{최소화} \tag{9}
\]

여기서, \(f(x) \) 목적함수, \(x=(u_0, I_a) \) 설계변수, \(N_i \) : 과정간극수압 비를 비교하는 총 시간단계의 수, \(U_i^s \) : 피에조콘에서 관측된 과정간극수압 비 [식 (8)], \(U_i \) : 이론적인 과정간극수압 비 [식 (7)].

식 (9)의 최적화 문제로 정식화된 평형간극수압과 강성지수의 역해석 문제는 비구속 최적화 문제인 경우 효율적인 것으로 알려진 BFGS (Broyden-Fletcher-Goldfarb-Shanno) 기법을 이용하여 해결될 수 있다. 이 기법에서는 설계변수로 선정된 평형간극수압 \(u_0 \)과 강성지수 \(I_a \)를 목적함수가 감소하는 방향으로 최소화 될 때까지 연속적으로 변화시키며 최적의 해를 찾는다.

이때, 식 (7)의 이론적인 과정간극수압 비 \(u_i \)는 주어진 무차원 시간계수 \(T \)에 따라 계산되므로 동일한 시간계수 \(T \)에서의 비교를 위해서는 피에조콘에서 얻어진 관측 간극수압의 관측시간 \(t \)도 동일한 무차원 시간계수로 환산될 필요가 있다. 피에조콘 관측시간의 초입 식 (10) 과 같이 50\% 소산도에서의 이론시간계수 \(T_{50} \)와 50\% 소산도에 도달하는데 소요되는 시간 \(T \)를 바탕으로 무차원의 시간계수로 환산될 수 있다. 여기서, \(T \) 기호는 최적화 과정 중에서 최적 해의 후보(trial solution)로서 사용된 평형간극수압 \(u_0 \)과 강성지수 \(I_a \)에 관련된 시간계수를 도입시간을 의미한다.

\[
T = \frac{T_{50}}{T_{50}} \cdot t \tag{10}
\]

여기서, \(T_{50} \)은 후보 강성지수(trial rigidity index, \(I_{a\text{, trial}} \))에 대한 50\% 소산도에서의 시간계수, \(I_{a\text{, trial}} \)은 평형간극수압(trial ambient pore pressure, \(u_{a\text{, trial}} \))을 기준으로 한 50\% 소산도에 도달하는 소요시간, \(T \)은 실제 간극수압의 관측시간.

164 한국지반공학회논문집 제18권 제2호
제안된 역해석기법의 흐름도는 그림 3에 나타나 있다. 피에조콘으로부터 관측된 간극수압 소산조건은 가정된 평행간극수압을 이용하여 정규화된 과정간극수압 비율의 형태로 표현된다. 한편, 가정된 강성지수에 대해서 이론적으로 계산된 과정간극수압 비율의 차이가 최소화될 때까지 최적화기법에 의하여 평행간극수압과 강성지수를 연속적으로 개선되고 일정한 수렴조건을 만족하는 과정간극수압과 강성지수의 최적의 값으로 결정된다. 일단 최적의 평행간극수압과 강성지수에 도달되면 프로그램은 반복작업을 마치게 되며 최적 해로 결정된 과정간극수압 \(u_{opt} \)을 기준으로 정규화된 관측간극수압 곡선으로부터 50% 도달시간 \(t_{50} \)이 결정되며 최적 강성지수 \(I_k_{opt} \)에 대한 Randolph & Wroth (1979)의

해석적 해로부터 50% 소산도에서의 이론시간계수 \(T_{50} \) 값이 결정되어 다음의 식 (11)로부터 최적의 수평압밀 계수가 계산된다.

\[
c_b = \frac{T_{50}}{t_5} \cdot r_h^2
\]

여기서, \(T_{50} \): 최적화 된 강성지수 \(I_k_{opt} \)에 대한 50% 소산도에서의 이론시간계수; \(t_{50} \): 최적화된 평행간극수압 \(u_{opt} \)을 기준으로 50% 소산도에 도달하는 소요시간; \(r_h \): 피에조콘 반경(1.785cm).
5. 제안된 역해석 기법의 적용

5.1 역해석 결과 및 수평밀밀계수

그림 5는 E.L. -30m 깊이를 제외한 나머지 깊이에서의 간극수압 소산두선으로 모두 24시간이상 관측된 결과들이다. 대상지반은 소산이 크며 투수계수가 10^9 m/s 이상의 점포층으로 관측된 간극수압이 24시간 이후에도 완전히 수렴된 경향을 보이지 않는 경우에 가까운 거동을 보이는 시점에서 관측한 종류에 운용될 수 있다.

역해석 결과 얻어진 평형간극수압 값들은 피에조곤 관측결과와 2.5~4.7%의 미실적 차이를 보이며 매우 일치하는 결과를 나타내고 있다. 그림 6은 역해석된 결과와 함께 피에조곤 관측결과, 대상지반에 대입된 피에조곤에 의해 관측된 평형간극수압, Tanaka & Sakagami (1989)가 제안한 관입간극수압을 이용한 평형간극수압
예측결과 [식 (1) 참조]를 함께 도시한 결과이다. 피에조 메터 관측결과 대상 지표면지 및 중앙부에 보다 큰 진류
간극수압이 존재하는 것으로 나타났으며, 관측값들을 평균적으로 연결한 점선은 역해석 결과가 피에조 콘
소면시험 결과와 함께 매우 근접하게 나타남을 알 수 있
다. 또한 Tanaka & Sakagami (1989)의 예측결과와 비교
할 때, 제안된 역해석기법이 관류간극수압이 존재하는
경우의 평형간극수압을 보다 타당하게 예측할 수 있을
것으로 판단된다. Tanaka & Sakagami (1989)의 예측결
과 식 (1)은 오사카만에 존재하는 유사한 CONSISTENCY (consistency) 특성을 갖는 정규압밀 점토의 전단특성
\(\Delta u = u_s^{\text{ref}} = \frac{2}{3} (q_f - \sigma_v) \) 를 바탕으로 관류간극수압을
예측하고 있으나, 그 차이가 작지 않은 것으로 나타
나 다른 특성을 갖는 지역의 지반에 적용할 경우 전단특성
에 대한 확인이 바탕에 반영되어야 할 것으로 판단된다.
역해석된 강성지수 값들은 268-276 사이의 좁은 범
위에 일관성을 있게 추정되었으며, \(\sigma_{\text{ref}} \) 관계로부터
정의된 값 400에 비해선 67-69% 수준에 해당하는 값들이
다. 역해석된 강성지수와 관측값의 차이에 관해서는
5.2에서 변형률 구준을 중심으로 논하고자 하며, 여기서
는 관측 강성지수 결정에 사용된 전단진행계수가 seismic-
콘결과로부터 얻어진 값으로, 10\(^{-5}\) 정도의 저변
형 상태에서의 최대 전단진행계수 \(G_{\text{max}} \) 값이므로 계산
된 강성지수 400 역시 최대 강성지수 값임을 체제한다.
역해석기법의 용량성은 역해석에 필요한 입력자료의
확득을 위한 현장에서의 관측시간과 실제 현장에서의
관측시간을 비교함으로써 명확하게 나타낸다. 표 2에는
역해석을 위해 입력된 간극수압의 관측시간과 현장에
서 수렴된 평형간극수압 값을 얻기 위하여 실제로 소요
된 관측시간이 비교되어 있다.
피에조콘을 통한 압밀특성 추정 시 통상 요구되는 관
측 수준도가 50%이고 Kim & Lee (2000)에 의하면 50%
수준도까지의 입력자료로도 역해석을 통한 신뢰성있는
수평압밀계수의 예측이 가능하기 때문에, 본 연구에서
도 역해석에 필요한 입력 수준자료의 관측시간은 초기
관류간극수압의 50% 수준도까지가 이용되었다. 표 2에
서 현장관측을 통하여 평형간극수압의 확인까지 관찰
시간이 2,117-2,933분 (1.5-2일)에 비해하여 역해
석에 요구되는 관측시간은 32-45분으로 표 1과 그림
6에서 나타난 바와 같이 정확한 평형간극수압을 예측하
면서도 요구되는 관측시간이 매우 짧아 시간적인 면에
서 보다 효율성을 알 수 있다.
표 3에는 역해석으로 얻어진 평형간극수압과 최적의
강성지수값을 바탕으로 식 (11)로 계산된 수평압밀계수
가 나타나 있다. 비교대상으로는 고베항에서 채취된 불로
단 시료에 대해 수행된 일차압밀압밀시험 결과로, 얻어진
연직압밀계수는 선형압밀적중을 기점으로 정규압밀 영
역에서 급격한 감소가 있는 것으로 나타났으며 정규압
밀 및 파감밀 영역의 연직압밀계수 평균값이 비교되어
있다 (해당지점, 1995).
본 연구에서 역해석된 평형간극수압과 최적 강성지
수를 바탕으로 얻어진 수평압밀계수는 정규압밀 영역
보다는 과압밀 영역의 평균 연직압밀계수에 가까우며
평균값보다 1.1-1.6배 (평균 1.3배) 정도 큰 것으로 추
정되었다. 현재까지 피에조콘 소면시험으로부터 얻어진
압밀계수가 어떤 음속측면에 해당하는 것인지 명확
한 결론이 내려진 바가 없으나, Baligh & Levadoux (1980)

| 표 2. 평형간격수압을 얻기위해 요구되는 관측시간 비교 |
|------------------|------------------|------------------|
| Elevation (m) | 관측시간 (Seconds) | 역해석을 위해 입력된 관측시간 (Seconds) |
| -20.1 | 175,992 | 1,931 |
| -23.2 | 124,777 | 2,724 |
| -27.2 | 127,017 | 2,724 |

피에조 콘 소면시험을 초기형상성을 이용한 평형간극수압과 강성지수의 결정 167
이후, 소산초기에서 50% 소산도 전 까지는 콘관입으로 발생된 판공간축수압이 존재하는 재하단계 (unloading stage)로 과압밀 영역에서의 값으로 판단하는 것이 설득력 있게 보인다. 또한 연직방향과 수평방향의 압밀특성의 이방성을 고려한다면 역해석으로 추정된 물성을 이용한 수평압밀계수 추정이 다양한 것으로 판단된다.

5.2 역해석 된 강성지수의 변형률수준에 대한 고찰

본 절에서는 역해석기법을 통해 추정된 강성지수의 변형률수준에 대해 논하고자 한다. 지난 20여년간 콘 관입 분석이나 콘관입면 (deep penetration) 문제를 실제적으로 모사하는 기법으로 알려져, 국내외 돌공학 자들에게 사용되어 온 변형률경로법 (Strain Path Method; Baligh & Levadoux, 1980, 1986)은 Boston Blue Clay의 강성지수 500에 해당하는 변형률과 초기구간축수압을 형성하고 소산과정을 모사함으로써 이론적 근거가 제시되었다. 따라서, 이 결과는 이와 유사한 강성지수를 가진 흙에 대하여 적절하며 일반적으로 이와 같이 강성이 크지 않은 국내지반에 적용할 경우 추정된 수평압밀계수와 과대평가 되므로 사용에 주의하여야 한다. 한편 Teh & Houlsby (1991)는 변형률경로법에서의 저반의 강성지수 Gs에 따라 초기 변형률과 간극수압이 달라질 뿐 아니라 연속된 소산과정에도 큰 영향을 미침을 보이고 이를 개선하기 위하여 일반화된 판공-전방성 구성관계를 이용하여 강성지수를 포함하는 수정된 시 간계수 T = Gs · t/[(1−ν) · ν]를 제안하였다. 그러나 결국 사용자는 강성지수의 선택을 요구받고 있으며 따라서 압밀계수 추정의 성패는 올바른 강성지수(또는 전단 탄성계수)의 선택에 달려있다고 할 수 있다.

본절에서는 제안된 역해석기법으로 얻어진 강성지수와 역해석된 값은 전단탄성계수의 변형률수준을 비교함으로써 역해석된 강성지수의 변형률수준에 대한 간접적인 검토를 수행하였다. 그림 7은 고배향에서 실시된 seismic-콘 실험결과 전단탄성계수 Gs와 비배수전단강도 sa의 관계 그리고 재취된 불고전 시료를 이용한 공간주 실험결과인 전단탄성계수 비 G/Gs - 전단변형률 γ의 비선형 관계를 표시하고 있다(이철수, 1995). 표 3에 사용된 관측값과 강성지수 400을 그림 7(a)에서 보여지는 바와 같이 전단탄성계수 Gs와 비배수전단강도 sa 사이의 선형회귀식을 통하여 얻어진 강성지수 Gs는 seismic-콘으로부터 얻어진 값으로 10^6 수준의 저변형률수준에 해당하므로 G/Gs = 1.0인 지점에서 얻어진 값으로 생각할 수 있다. 역해석 된 강성지수의 변형률수준을 비교하기 위하여 비선형 관계를 보이고 있는 G/Gs - γ관계에서 개발한 변형률수준에 - 0.0001%, 0.01%, 0.1%, 1% - 대한 G/Gs값을 선택하고 강성지수를 계산하여 표 4에 정리하였다.

다양한 변형률수준에서 계산된 강성지수와 역해석에 서 얻어진 최적 강성지수를 비교하면, 역해석된 강성지수는 범위(268-276)는 Gs의 67-69% 수준이며 변형률수준은 0.01%-0.1% (0.05% 정도) 범위로 증간변형률수준 이상인 것으로 평가되었다. 이러한 결과는 피에조 롤 해석을 위한 강성지수 결정 시 지반은 유발되는 다양한

168 한국지반공학회논문집 제18권 제2호
표 4. 다양한 변형률수준에서의 강성지수와 역해석된 강성지수 비교

<table>
<thead>
<tr>
<th>변형률수준</th>
<th>G/G_s</th>
<th>G^*</th>
<th>lnG/G_s</th>
<th>ln_G^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000001</td>
<td>1</td>
<td>400</td>
<td>400</td>
<td>268</td>
</tr>
<tr>
<td>0.0001</td>
<td>0.86</td>
<td>344</td>
<td>344</td>
<td>220</td>
</tr>
<tr>
<td>0.001</td>
<td>0.55</td>
<td>220</td>
<td>220</td>
<td>56</td>
</tr>
<tr>
<td>0.01</td>
<td>0.14</td>
<td>56</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>

* G_s=400s_b을 적용하여 얻어진 값

변형률수준을 평균적으로 고려할 수 있도록 G_s을 사용할 것을 추천한 기존연구자들 (Robertson & Campanella, 1983; Roy 등, 1982; Schmidth 등, 1997; Danziger 등, 1997)의 주장에 부합하는 것으로 판단된다.

결과 본 연구에서 제안된 역해석법을 관측된 강인
수압의 전반적인 소산과정을 가장 잘 표현할 수 있는
피에조조 토적지정의 평균적인 강성지수를 제공하며,
이는 강인수압 소산과정 시 진변지정의 다양한 응력-변
형률수준을 평균적으로 고려하는 것으로 생각될 수 있
다. 제안된 역해석법을 이용한 최적 강성지수 값의 추
정과 구준한 실험료의 측정으로 강인성지수 선택을 위
한 추가적인 실험없이 신뢰성 있는 압밀계수를 추
정할 수 있다면 시간과 비용면에서 효율적인 것으로 판
단되며 이를 위한 신뢰성 있는 실험료의 측정이 요구
된다.

6. 결론

본 연구에서는 최적화기를 적용함으로써 50% 소
산도까지의 피에조조 소산시험 결과를 바탕으로 현장
의 평형간극수압과 최적의 강성지수를 압밀함을 할 수 있
는 기법이 제안되었고. 또한, 이를 바탕으로 수평압밀계
수 계산이 이루어졌으며 실제 문제에 적용하여 그 타당
성을 검증하였다. 본 연구를 통하여 얻어진 주요 결론을
정리하면 다음과 같다.

(1) 제안된 역해석법은 50%의 초기 소산자료만을 바
탕으로 장시간 관측되어야 하는 현장지반의 평형간
극수압을 매우 정확하게 효율적으로 예측할 수 있으
며 이는 압밀 진행중에 진변간극수압이 존재하는 지반의
평형간극수압 예측을 통하여 검증되었다.

(2) 제안된 역해석법으로는 소산소판의 초기부분으로
부터 평형간극수압과 동시에 최적 강성지수 lnG를 예
측할 수 있다. 역해석된 강성지수의 변형률수준에
대한 고찰로부터 콘 해석을 위한 진단성계수 선정
시 중간변형에서 대변형률수준에 해당하는 값을 사
용하는 것이 보다 적절한 것으로 판단되었다.

(3) 이상의 평형간극수압과 최적 강성지수를 바탕으로
예측된 수평압밀계수는 실내 일차원 압밀실험에서
어려진 결과와 비교할 때, 제작시안(loading stage)
의 평균적인 압밀계수보다 가까운 값으로 지반의
이방성을 고려한다면 매우 정확한 예측이 이루어질
을 알 수 있었다.

감사의 글

본 연구는 현대산업개발(주)과 일본학술진흥원(JSPS; Japan Society for the Promotion of Science)의 지원에 의
해 이루어진 것으로 이에 깊이 감사 드립니다.

참고 문헌

1. 김영수(2001), "동기변경과 최적화법을 이용한 다타로테러 소산
 시험 예측법", 한국지반공학회논문집, 제7권, 제4호, pp.43-50.
2. 김영수, 이승재(1998), "근장단부에 위치한 강인수압 소산
 과정을 이용한 수평 압밀계수 결정", 한국지반공학회논문집, 제
 14권, 제4호, pp.141-149.
3. 황대진, 김철용(1997), "피에조조 강인수압 소산시험에 관한 연구
 ", 한국지반공학회논문집, 제12권, 제6호, pp.25-36.
 after cone penetration", MIT. Dept. of Civil Engineering, Report
 piezocene penetration. II: Interpretation", ASCE, JEGD, Vol.112,
 No.7, pp.727-744.
 significance of the strain path analysis in the interpretation of
 an Optimization Design Technique for Determining the Coefficient of
 Consolidation by Using Piezocene Test Data", Computers and
 Geotechnics, Vol.21, No.4, pp.277-293.
 pressure dissipation behavior by short-term piezocene dissipation
 test", Computers and Geotechnics, Vol.27, No.4, pp.273-287
 the Consolidation around a Driven Pile", International Journal for
 217-229.
12. Robertson, P. K., Campanella, R. G.(1983), "Interpretation of

