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Abstract

In this paper, 102 m-elevated MEMS CPWs on various substrates are presented. Effective dielectric constants of elevated CPW(ECPW)
on polyimide-loaded silicon or alumina substrate are examined and characteristic impedances are also computed versus elevation height.
Dispersive property of ECPW and its clectromagnetic field disiributions are studied through 3-D FDTD algorithm for optimum design.
Attenuation of ECPW is measured with TRL calibration procedure and revealed about 3.2 dB lower than that of conventional CPW on
the same low-resistivity silicon at 40 GHz. ECPW on polyimide-loaded silicon with overlapped configuration reveals 0.2 dB/mm.

Especially, alumina substrate imposes better attenuation than silicon.
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I. Introduction

As the clock frequency in high-speed digital circuits and
computers reaches a few giga-hertz regime, low-loss and
low-dispersion signal transmission line is necessary. However,
the performance of conventional transmission fines such as CPW
or microstrip line implemented in CMOS compatible processing
is limited to support high clock frequency signal and thereby
exhibits quite dispersive and lossy characteristics. Various ways
have been reported to improve the characteristics of con-
ventional transmission lines. The method of removing the silicon
substrate in the vicinity of the metal could lead to fabrication
issues on mess productionm'm. Transmission lines with pol-
yimide layer are presented by showing measured results”™ 1.
High-resistivity silicon (HRS) revealed low RF signal leakage similar
to GaAs substratem, however, HRS wafer is not cost- effective and
further requires modification of standard CMOS process.

Recently, an elevated CPW geometry has been suggested
without any measured data™. In this paper, various simulation
results such as characteristic impedance, effective dielectric
constant, electromagnetic field distributions, dispersive property,
and signal velocity are uncovered with aid of a three
dimensional finite-difference-time-domain method (3D-FDTD).
Furthermore, measured total losses for transmission lines on
three different substrates are presented for the performance
comparison between conventional CPW and ECPW. [n every
case ECPWs reveal lower total loss than conventional CPW, and
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Fig. 1. Schematic of elevated coplanar waveguide on low-
resistivity silicon or alumina substrate with 10 xm
polyimide.

overlapped ECPW shows significant improvement of dispersion
characteristics, signal velocitym, as well as total loss in the
range up to 40 GHz.

Ii. Design and Fabrication

Conventional CPW supports quasi-TEM mode and is highly
dispersive on CMOS grade silicon substrate due to air-dielectric
interface and low resistivity, presenting limitations for the use
on high-speed digital circuits. In this paper, the center signal
line is 10 zm-elevated in the air to minimize the dispersive
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property as shown in Fig. 1. Important parameters to characte
rize the ECPW performance are height of the elevated signal
line(H), width(#), spacing(S) between the signal fine and side
ground planes, where negative value of § means the overlapped
configuration. The ECPW lines having center conductor widths
of 100m and 50 zm with 10 xzm height are fabricated as
shown in Fig. 2, where the area of supporters is 20 X20 zm’.
Note that the height can be 40 zm to 60 zm without sacrificing
mechanical stability. Since the distance between the supporters
is 500 pxm, the effect of the supporters can be neglected.
Fabrication is relatively -straightforward using standard liftoff
processing and is compatible with standard CMOS process. In
Fig. 3 fabrication procedure is described in detail. Polyimide
with 10 zm thickness is coated on substrate materials. The three
different substrate configurations such as a CMOS grade low-
resistivity silicon, a polyimide-loaded standard silicon, and a
polyimide-loaded alumina, are used. Conventional CPWs(i.e.
H=0 ¢ m) with spacings 20 gm, 60 zm, 100 zm are fabricated
on each case. The 10 #m-ECPWs with spacing of —20xm, 0
pam, 20pm, 60xm, to 100xm, are fabricated on three
different substrate configurations.

e e s i e

Fig. 2. SEM photograph of 10 gm-elevated coplanar wave-
guide.
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Fig. 3. Fabrication procedure.
(a) polyimide and first seed-layer coating
{b) PR coating and photo-lithography
(c) copper plating
(d) PR coating and photo-lithography
(e) copper plating
(f) second seed-layer coating
(g) PR coating and photo-lithography
(h) copper plating
(i) first and second seed-layer etching
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Fig. 4. Effective dielectric constant for polyimide-loaded sili-
con (e, =11.9) or alumina (¢, =9.5).

M. Theoretical Analysis

Yee's algorithm-based 3D-FDTD is used to analyze the cha-
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Fig. 5. Characteristic impedance for various geometry of
ployimide-loaded silicon.

racteristics of the designed ECPW. Metal thickness is not
considered in simulation. When signal line is elevated in the air,
effective dielectric constant can be interpreted as the dielectric
constant of a homogeneous medium that replaces the air and
below multi-layer dielectric regions. For highly elevated geo-
metry, very low effective dielectric constant close to 1 could be
obtained for both silicon and alumina cases as shown in Fig. 4.
Since signal velocity is inversely proportional to the square root
of <4 high speed characteristic can be achieved by elevating
center strip. ECPWs with negative S reveal minimum substrate
dependency. As § increases ey for alumina is much less than
that of Si.

Various characteristic impedances ranging from 40 to 100
ohm are demonstrated with geometrical parameters W/H and
S/W as shown in Fig. 5. As S and H increases Z, increases when
W is fixed. Therefore high Z, can be acquired by elevating
center strip for a fixed § and W without narrowing the center
strip width, The transverse electromagnetic field distributions of
a z-directed signal are shown in Fig. 6. Each contour line shows
that the equipotential electric field and arrows represent the
direction of the electric field vector and the length of arrow is
the magnitude of the electric field. As shown in Fig. 6 (a), the
fields of conventional CPW are distributed not only in the air
but also in silicon substrate. However, the electric fields of
ECPW are largely concentrated in the air region, especially in
the vicinity metal edges as clearly shown in Fig. 6 (b) and (c).
Note that most of electric fields are in the vicinity of air and
polyimide in the case of S=-20pxm. It means that the
overlapped ECPW line is nearly isolated from the lossy silicon
substrate and exhibits low loss characteristic.

As shown in Fig. 7, it is interesting to observe that how the
Gaussian-shaped pulse propagates along the transmission lines of
various geometries. The propagating signal on the conventional
CPW on 10 zzm-polyimide-loaded silicon is highly distorted and

(b)

(©

Fig. 6. Transverse electric field distribution on polyimide-
loaded silicon.
(a) Conventional CPW(H=0 gxm, S=100 gm)
(b) 10 g m-elevated CPW(H=10 gm, $=20 pm)
(¢) 10 pgm-elevated CPW(H=10 ugm, S=-20 pm)

the signal velocity is significantly slower than that of the ECPW
cases, thus it is not adequate for high speed circuits. It is clear
that ECPW exhibits very low dispersion loss and supports high
signal velocity as S varies from 100 zm to —20 zm.
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Magnitude of electric field

Fig. 7.
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Pulses on the ECPW with S=—-20 zm and S=0 zm propagate
without any significant distortion and signal integrity is main-
tained very well. From the fact that the signal velocity of 20 zm
-overlapped CPW is 1.8 times faster than that of conventional
CPW, the ECPW structure can be accepted as a good candidate
for high speed interconnects. Elevation height(#H) is another
critical parameter to characterize the performance of ECPW
lines. Signal velocity for elevation heights is shown in Fig. 8.
Signal velocity increases as elevation height increases at a fixed
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Fig. 8.

Also signal velocity decreases as spacing increases at
height.
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Signal velocity along the ECPW line fabricated on
standard low-resistivity silicon as a function of
spacings and elevation heights.
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Fig. 9. Measured attenuation for 10 g m-elevated CPW on

(a) standard low-resistivity silicon(W=100 g m)
(b) polyimide-loaded silicon(W=50 s m)
(c) polyimide-loaded alumina(W=100 g m)
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IV. Measurement

Attenvation of the fabricated ECPWs with three different
substrates are measured using the Network Analyzer and GSG
(Ground-Signal-Ground) high frequency coplanar probes. In
order to minimize the parasitic effects, on-wafer TRL cali-
brations are carried out. Measured results are shown in Fig. 9
for three different cases. With the standard low- resistivity
silicon the attenuation of the conventional CPW is 5.2 dB at 40
GHz and it is clear that these types of lines can not be used for
high-speed circuits. The losses of the 10 ym -ECPWs are 2 dB
lower than that of conventional one, and for the 104
m-polyimide-loaded silicon the attenuation is significantly re-
duced at lower frequency region. Note that ECPW with §=-20
pm reveals the best performance of 0.2 dB below up to 40
GHz. As shown in Fig. 9 (c) the attenuation of ECPW on
alumina substrate is about 0.16 dB below.

V. Conclusion

10 ym-elevated CPWs are analyzed with 3D-FDTD and
on-wafer measured results are presented. The effective dielectric
constant, characteristic impedance, electromagnetic field distri-
butions, propagating wave form, signal velocity, and measured
total loss are well documented. The effect of elevation heights
and spacings are thoroughly studied to characterize the perfor-
mance of ECPWs. ECPWs on standard silicon have the effect
of 3.2 dB attenuation reduction compared with conventional
CPW. In the case of polyimide-loaded silicon, attenuation is
much fower than that of standard silicon. Particularly, an ECPW
with S=-20 zm reveals below 0.2 dB up to 40 GHz. The
attenuation of 10z m-polyimide-loaded alumina is below 0.16 dB
for conventional case as well as elevated one. This indicates that
low-loss alumina substrate imposes much better loss cha-
racteristics, even though low-resistivity silicon substrate can be
used for high frequency application with center conductor
elevation.
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