Synthesis and Vibrational Spectroscopic Study of Selectively 3¹-¹⁸O-Labelled Chlorophyll Derivatives Hidetada Morishita, Hitoshi Tamiaki* Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan Regioselective 3^{1-18} O-labelling of chlorophyll derivatives possessing a 3-formyl group such as methyl (pyro) pheophorbide-d (3, 4) was carried out efficiently by a simple one-step procedure; by stirring a homogeneous solution of tetrahydrofuran and H_2^{18} O containing a small amount of trifuluoroacetic acid. Key words: carbonyl group, chlorophyll, IR spectra, isotope label, oxygen-18, regioselective synthesis #### INTRODUCTION Chlorophylls can play various roles photosynthetic processes and their properties are regulated by local and specific environments [1,2]. The 31-oxo group of these chlorophylls are bonded with any other functional groups in natural photosnthetic apparatatus and interaction has been analyzed by vibrational spectroscopies [3]. Therefore, our attention is focused on facile, efficient and specific ¹⁸O-labelling of chlorophyll derivatives by organic synthesis. In this work, we report efficient and regioselective ¹⁸O-labelling at the 3-CHO of chlorophylls as well as their vibrational spectra. E-mail: tamiaki@se.ritsumei.ac.jp ### **MATERIALS AND METHODS** Chlorophyll derivatives such as methyl pyropheophorbide-a (1) [4], methyl pheophorbide-a (3) [5], methyl pyropheophorbide-d (4) [6], methyl pheophorbide-d (5) [5] (see Figure.1) were prepared, as described previously, from chlorophyll-a. ^{*}To whom correspondence should be addressed. Typical biphasic procedures for ¹⁸O-labelling method of chlorophyll derivatives are as follows: trifluoroacetic acid (TFA, 8 µL) and H₂¹⁸O (95% ¹⁸O atom, 0.1 mL) was added to a distilled CH2Cl2 solution (2 mL) of The mixture in a sealed vial was stirred at room temperature for two days. After opening the vial, the reaction mixture was worked up by aqueous 4% NaHCO3 solution and water, and was purified by flash column chromatography (FCC). The main fraction was recrystallized from CH₂Cl₂ and MeOH to give a 1:4 mixture of 1 and 13^{1-18} O-1 as a black solid (13 mg, > 90% yield), which was characterized by H-NMR, IR and FAB-¹H-NMR data of the ¹⁸O-labelled 13¹-¹⁸O-1 MS spectra. showed the same data of the corresponding unlabelled 1. Regioselective 3¹-¹⁸O-oxo-labelling was carried out in a homogeneous solution. For example, stirring a THF (2 mL)-H₂¹⁸O (0.1mL) solution of **3** (19.5 mg) and TFA (0.8 μL) for 18 h gave solids after FCC and recrystalization from CH₂Cl₂ and hexane. ¹H-NMR data of the obtained ¹⁸O-labelled products showed the same data of the corresponding unlabelled substrate. The products were mainly 3¹-¹⁸O-**3** and also contained 3¹- and 13¹-doubly ¹⁸O-compound and non-labelled compound. ## RESULTS AND DISCUSSION Keto carbonyl oxygens of chlorophyll derivatives reacted with H₂¹⁸O under acidic conditions to give the corresponding ¹⁸O-labelled compounds. Typically, 3-vinyl-chlorin 1 was examined to give 13¹-18O-oxo-labelled 13¹-18</sup>O-1 by stirring a biphasic solution (CH₂Cl₂ and acidic H₂¹⁸O). The IR spectra of the resulting product and the starting material 1 showed that stretching vibrational band of the 13-carbonyl group of 13¹-18</sup>O-1 was down-shifted about 30 cm⁻¹ from that of the 13¹-16</sup>O-1. The main component of the product was selectively ¹⁸O-labelled at the 13-keto group as in 13¹-18</sup>O-1 and non-labelled 1 still remained about 20% in the product. Both of 3¹- and 13¹-18</sup>O-oxo-labelling of chlorophyll derivatives were achieved by the above procedures; for example, 3 possessing 3-CHO and 13-CO was doubly labelled. Then we applied the direct and regioselective ¹⁸O-exchange of the 3¹-oxo group in **3** by stirring a homogeneous solution (THF and weaken acidic H₂¹⁸O). Such mild acidic conditions preferred regioselectively ¹⁸O-exchange at the 3-CHO to that at the 13-CO of **3**. The observation is reasonable because the 3-CHO is more reactive then the 13-CO: the regioselective reduction of 3-CHO over 13-CO has been reported [6]. The above reaction gave the products containing mainly 3¹-¹⁸O-oxolabelled 3¹-¹⁸O-3. The stretching vibrational band of the 3-¹⁸O-labelled carbonyl group moved to about 30 cm⁻¹ lower wavenumber and was well-separated from the unlabelled 13-CO band. Next we try to prepare 3^{1} - 18 O-labelled 4 possessing a methoxycarbonyl group at the 13^{2} -position (see Figure 1). Under the same conditions described above (biphasic and homogeneous), 13^{1} -oxo- 18 O-labelling of methyl pheophorbide-a (2) was difficult probably due to steric hindrance of the neighboring 13^{2} -methoxycarbonyl group. Therefore, the 3-formyl group of 4 was regioselectively ¹⁸O-labelled to give 3¹-¹⁸O-oxo-labelled 3¹-¹⁸O-4 containing a small amount of non-labelled 4 and a trace amount of 3¹-13¹-¹⁸O-4 by both the above acidic conditions. The present ¹⁸O-labelling procedures are useful for other natural chlorophylls including chlorophyll-*b* possessing 7(3)-CHO and 13²-COOMe and bacteriochlorophyll-*e* possessing 7-CHO and lacking 13²-COOMe. #### REFERENCES - McDermott G., S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-Lawless, M. Z. Papiz, R. J. Cogdell and N. W. Isaacs (1995) Crystal structure of an integral mambrane light-harvesting complex from photosynthetic bacteria. *Nature* 376, 517-521. - Jordan P., P. Fromme, H. T. Witt, O. Klukas, W. Seanger and N. Krauß (2001) Three-dimentional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909-917. - Tamiaki H., M. Amakawa, A. R. Holtzwarth and K. Schaffner (2002) Aggregation of metallochlorins in hexane. A model of chlorosomal bacteriochlorophyll self-assemblies in green bacteria. *Photosynth. Res.* 71, 59-67. - 4. Tamiaki H., S. Takeuchi, S. Tsudzuki, T. Miyatake and R. Tanikaga (1998) Self-aggregation of synthetic zinc chlorins with a chiral 1-hydroxymethyl group as a model for *in vivo* epimeric bacteriochlorophyll-c and d aggregates. *Tetrahedron* 54, 6699-6718. - 5. Oba T. and H. Tamiaki (1999) Why do chlorosomal chlorophylls lack the C13²-methoxycarbonyl moiety? An in vitro model study. *Photosynth. Res.* 61, 23-31. - 6. Tamiaki H., M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holtzwarth and K. Schaffner (1996) Synthetic zinc magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria. *Photochem. Photobiol.* 63, 92-99