Properties of Cl Binding Site in Oxygen-Evolving Complex of Photosystem II Studied by FTIR Spectroscopy Koji Hasegawa^{1*}, Yukihiro Kimura¹, Asako Ishii¹, Jun Minagawa² and Taka-aki Ono¹ Laboratory for Photo-Biology (I), RIKEN, 519-1399 Aoba, Aramaki, Aoba, Sendai 980-0845, Japan Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan Role of Cl $^-$ in photosynthetic oxygen-evolving complex was studied by light-induced Fourier transform infrared (FTIR) spectroscopy. Cl $^-$ depletion resulted in the suppression of amide I and amide II IR modes upon S₁ to S₂ transition. Br $^-$, I $^-$, and NO₃ $^-$ substituted FTIR difference spectra were very similar to that in Cl $^-$ reconstitution. F $^-$ and CH₃COO $^-$ substituted spectra were largely distorted. We succeeded in detecting the structural change of NO₃ $^-$ in the Cl $^-$ site upon the S₁ to S₂ transition from 14 NO₃ $^-$ / 15 NO₃ $^-$ difference spectrum. Key words: chloride, FTIR, Mn-cluster, oxygen-evolving complex, photosystem II #### INTRODUCTION Photosynthetic oxygen evolution is carried out by an oxygen-evolving complex (OEC) residing on the donor side of photosystem (PS) II. The OEC involves a tetranuclear Mn-cluster that provides a catalytic site for water oxidation. The reaction comprises of five intermediate states labeled S_i (i=0-4), where S_n proceeds to S_{n+1} by absorbing a photon (n=1 in the dark). Cl⁻ is an essential inorganic cofactor to OEC function, and its depletion impairs the water oxidation capability. Cl⁻ can be functionally replaced by another monovalent anion such as Br^- , I^- and NO_3^- but not by F^- and CH_3COO^- . Although it has been believed that CI^- is closely associated with OEC, precise role and location of CI^- in OEC are largely unknown. Light-induced FTIR spectroscopy is a powerful method to investigate the molecular structure and reaction process in OEC. In this work, we report effects of Cl⁻ depletion *To whom correspondence should be addressed. E-mail: kojihase@postman.riken.go.jp This study was supported by grants for the Frontier Research System at RIKEN and Grant-in-aid for Science Research (NO. 13640659) from MECSST of Japan. and anion substitution on the mid-frequency S_2/S_1 FTIR difference spectrum. On the basis of the obtained results, the properties of the Cl^- site and the role of Cl^- in OEC are discussed. #### MATERIAL AND METHOD BBY-type PSII membranes capable of oxygen evolution were prepared from spinach, and PS II core complexes in mutant lacking Tyr_D (D2-Tyr160Phe) were prepared from *Chlamydomonas reinhardtii*. For Cl⁻ depletion, the PS II samples were washed with 2M NaCl buffer (pH 6.5), and resuspended seven times in Cl⁻ free buffer containing 400 mM sucrose, 20 mM MES-NaOH (pH 6.5) with one-tenth volume of a medium containing 100 mM Ca(OH)₂ and 300 mM MES (pH 6.4). S₂/S₁ FTIR difference spectrum, which shows the structural changes due to the oxidation of Mn-cluster in dark adapted OEC, was obtained by subtracting Q_A⁻/Q_A difference spectrum at 250 K with CW illumination in the presence of DCMU (Q_A is a primary electron acceptor). Figure 1: Light-induced S_2/S_1 FTIR difference spectra of spinach PS II membranes that are (a) untreated, (b) CI^- depleted and (c) CI^- reconstituted with 40 mM NaCl. (d) Noise level. ### **RESULTS AND DISCUSSION** Figure 1 shows the effects of Cl⁻ depletion on the S₂/S₁ FTIR difference spectrum. By Cl depletion, the amide I (1690–1630 cm⁻¹) and II (1590–1515 cm⁻¹) IR bands due to the structural changes of protein backbone were largely suppressed or disappeared, while the bands 1587(+)/1564(-) cm⁻¹ for asymmetric at 1364(+)/1404(-) cm⁻¹ for symmetric stretching modes of the putative carboxylate ligands for the Mn-cluster [1] still remained considerably. This result indicates that Cl is required for the structural changes of the protein backbone upon S₁ to S₂ transition, and the suppression of the change may be ascribed to the inhibition of normal S state turnover beyond the S₂ state in Cl⁻ depletion. Figure 2 shows the effects of monovalent anion substitution on the S_2/S_1 FTIR difference spectrum. The overall features of Br⁻, I⁻, and NO_3 ⁻ substituted spectra were very similar to the untreated, and Cl⁻ reconstituted Figure 2: Light-induced S_2/S_1 FTIR difference spectra of Cl⁻-depleted spinach PS II membranes that are reconstituted with (a) Cl⁻, (b) Br⁻, (c) I⁻ (d) NO₃⁻, (e) F⁻ and (f) CH₃COO⁻. For reconstitution, sample membranes were supplemented with 40 mM Na-salt of each anion. spectra, being consistent with their capability in supporting oxygen-evolution. However the amide I band at 1668(+) cm⁻¹ is barely recovered by I and NO₃ substitution, suggesting that this band is not essential for the normal function of OEC. The spectral features of F and CH₃COO⁻ substitutions remarkably differ from those of surrogate anions Cl⁻, Br⁻, I⁻, and NO₃⁻. The marked suppression of the S₂/S₁ band formations in the F⁻ and CH₃COO⁻ substituted spectra might be ascribed to an electron donation from some redox component in competition with the Mn-cluster. Since Tyr_D is a possible candidate for this alternative component, we measured S₂/S₁ FTIR difference spectra in the core complexes from Tyr_D less mutant of C. reinhardtii, as showing in Figure 3. The normal difference spectrum was induced in presence of Cl but the formation of the bands was largely suppressed by F and CH₃COO substitutions. This indicates that electron donation from Tyr_D is not responsible for the suppression. Therefore, it Figure 3: Light-induced S_2/S_1 FTIR difference spectra of (a) F^- , (b) CH_3COO^- substituted and (c) CI^- reconstituted Tyr_D less PS II core complexes of *C. reinhardtii*. may imply that the binding of F⁻ or CH₃COO⁻ prevents structural changes of protein matrices proximal to the Mn-cluster upon its oxidation to the S₂ state. As shown in Figure 2, NO₃⁻ can be functionally substituted for Cl⁻, indicating that NO₃⁻ is bound to the Cl⁻ binding site. Since vibrational modes of NO₃⁻ are very sensitive to its binding form, NO₃⁻ can be used as a potent probe to elucidate the binding properties of Cl⁻ to its site. Figure 4 shows ¹⁴NO₃⁻/¹⁵NO₃⁻ FTIR difference spectra. The ¹⁴NO₃⁻/¹⁵NO₃⁻ (S₂/S₁ and S₂Q_A⁻/S₁Q_A) difference spectrum clearly showed the isotopic bands, which appear a prominent positive band at ~1370 cm⁻¹ and a negative band at ~1323 cm⁻¹ with minor positive and negative bands at ~1288 and ~1405 cm⁻¹. On the basis of these band position, the bands are ascribed to asymmetric NO stretching modes of an ionic NO₃⁻ but not metal-binding NO₃⁻. No isotopic band was observed Figure 4: $^{14}NO_3^{-}/^{15}NO_3^{-}$ FTIR difference spectra for (a) light-induced S_2/S_1 FTIR difference spectrum, (b, d) light-induced $S_2Q_A^{-}/S_1Q_A$ FTIR difference spectrum and (c) light-induced Q_A^{-}/Q_A difference spectrum. For spectrum (d), 20 mM NaCl was further included in the sample suspension. (e) Noise level. in the Q_A^-/Q_A difference spectrum, as well as the $S_2Q_A^-/S_1Q_A$ difference spectrum by further supplementation of Cl^- , indicating that the isotopic bands arise from structural changes of NO_3^- which is bound to the Cl^- binding site. These results demonstrate that the Cl^- binding site is structurally coupled with the Mn-cluster, but Cl^- (NO_3^-) is not direct ligand for the Mn-cluster. ## REFERENCES 1. Kimura, Y. and T.-a. Ono (2001) Chelator-induced disappearance of carboxylate stretching vibrational modes in S_2/S_1 FTIR spectrum in oxygen-evolving complex of photosystem II. *Biochemistry* 40, 14061-14068.