The Effects of Yunpyesan on Cell Proloferation, Apoptosis and Cell Cycle Progression of Human Lung Cancer A549 Cells

윤폐산에 의한 폐암세포 증식억제기전에 관한 연구

  • Kang Yun-Keong (Internal Medicine of Respiratory System, College of Oriental Medicine, Dongeui University) ;
  • Park Dong Il (Internal Medicine of Respiratory System, College of Oriental Medicine, Dongeui University) ;
  • Lee Jun Hyuk (Department of Anatomy, College of Oriental Medicine, Dongeui University) ;
  • Choi Yung Hyun (Department of Biochemistry, College of Oriental Medicine, Dongeui University)
  • 강윤경 (동의대학교 한의과대학 폐계내과학교실) ;
  • 박동일 (동의대학교 한의과대학 폐계내과학교실) ;
  • 이준혁 (동의대학교 한의과대학 해부학교실) ;
  • 최영현 (동의대학교 한의과대학 생화학교실)
  • Published : 2002.08.01

Abstract

To examine the effects of Yunpyesan on the cell proliferation of A549 human lung carcinoma cell line, we performed various experiments such as dose-dependent effect of Yunpyesan on cell proliferation and viability, morphological changes, quantification of apoptotic cell death and alterations of apoptosis/cell cycle-regulatory gene products. Yunpyesan declined cell viability and proliferation in both a dose- and a time-dependent manner. The anti-proliferative effect by Yunpyesan treatment in A459 cells was associated with morphological changes such as membrane shrinking and cell rounding up. Yunpyesan Induced apoptotic cell death in a time-dependent manner, which was associated with degradation of poly-(ADP-ribose) polymerase (PARP), an apoptotic target protein, without alterations of the balance between Bcl-2 and Bax expressions. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by Yunpyesan treatment in a dose-dependent manner. Western blot analysis revealed that cyclin D1 and A were reduced by Yunpyesan treatment, whereas cyclin dependent kinase (Cdk) inhibitor p27 was markedly increased in a time-dependent fashion. The level of tumor suppressor p53 proteins was also increased by Yunpyesan treatment and its increase might be linked to increase of Cdk inhibitor p27. In addition, Mdm2, negative regulator of p53, was down-regulated by Yunpyesan treatment. Since the expression of retinoblastome protein (pRB), a key regulator of G1/S progression, was reduced by Yunpyesan treatment, we supposed that phosphorylation of pRB might be also blocked. The present results indicated that Yunpyesan-induced inhibition of lung cancer cell proliferation is associated with the induction of apoptosis and the blockage of G1/S progression.

Keywords

References

  1. Cancer Res. v.60 The Pezcoller lecture: cancer cell cycles revisited. Sherr, C.J.
  2. Cell v.81 The retinoblastoma protein and cell cycle control. Weinberg, R.A.
  3. Mol. Cell. Biol. v.14 D-type cyclin-dependent kinase activity in mammalian cells. Matsushime, H.;Quelle, D.E.;Shurtleff, S.A.;Shibuya, M.;Sherr, C.J.;Kato, J.Y.
  4. Mol. Cell. Biol. v.14 Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Meyerson, M.;Harlow, E.
  5. Science v.257 Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Koff, A.;Giordano, A.;Desai, D.;Yamashita, K.;Harper, J.W.;Elledge, S.;Nishimoto, T.;Morgan, D.O.;Franza, B.R.;Roberts, J.M.
  6. Science v.259 Cyclin-dependent regulation of G1 in mammalian fibroblasts. Ohtsubo, M.;Roberts, J.M.
  7. Cell v.73 Mammalian G1 cyclins. Sherr, C.J.
  8. Cell v.67 Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Girard, F.;Strausfeld, U.;Fernandez, A.;Lamb, N.J.
  9. Science v.262 A link between cyclin A expression and adhesion- dependent cell cycle progression. Guadagno, T.M.;Ohtsubo, M.;Roberts, J.M.;Assoian, R.K.
  10. Nature v.354 Role for cyclin A in the dependence of mitosis on completion of DNA replication. Walker, D.H.;Maller, J.L.
  11. EMBO J. v.15 The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of S phase. Brandeis, M.;Hunt, T.
  12. Curr. Opin. Cell Biol. v.6 Cdk inhibitors: on the threshold of checkpoints and development. Elledge, S.J.;Harper, J.W.
  13. Nature v.374 Principles of CDK regulation. Morgan, D.O.
  14. Nature v.366 Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Gu, Y.;Turck, C.W.;Morgan, D.O.
  15. Cell v.75 The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Harper, J.W.;Adami, G.R.;Wei, N.;Keyomarsi, K.;Elledge, S.J.
  16. Cell v.75 WAF1, a potential mediator of p53 tumor suppression. El-Deiry, W.S.;Tokino, T.;Velculesco, V.E.;Levy, D.B.;Parsons, R.;Trent, J.M.;Lin, D.;Mercer, E.W.;Kinzler, K.W.;Vogelstain, B.
  17. Nature v.366 p21 is a universal inhibitor of cyclin kinases. Xiong, Y.;Hannon, G.;Zhang, H.;Casso, D.;Kobayashi, R.;Beach, D.
  18. Cell Biol. Int. v.17 Multiple pathways to apoptosis. Evans, V.G.
  19. Am. J. Pathol. v.136 Apoptosis. The role of the endonuclease. Arends, M.J.;Morris, R.G.;Wyllie, A.H.
  20. Science v.263 Premature p34cdc2 activation required for apoptosis. Shi. L.;Nishioka, W.K.;Th'ng, J.;Bradbury, E.M.;Litchfield, D.W.;Greenberg, A.H.
  21. Cell. Mol. Biol. Res. v.40 Apoptosis and the cell cycle. Chiarugi, V.;Magnelli, L.;Cinelli.;Basi, G.
  22. Cancer Res. v.54 WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. El-Deiry, W.S.;Harper, J.W.;O'Connor, P.M.;Velculescu, V.E.;Canman, C.E.;Jackman, J.;Pietenpol, J.A.;Burrell, M.;Hill, D.E.;Wang, Y.;Wiman, K.G.;Mercer, W.E.;Kastan, M.B.;Kohn, K.W.;Elledge, S.J.;Kinzler, K.W.;Vogelstain, B.
  23. Cell v.80 Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Miyashita, T.;Reed, J.C.
  24. Cell v.88 Apoptosis by death factor. Nagata, S.
  25. Oncogene v.9 Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. Zhan, Q.;Fan, S.;Bae, I.;Guillouf, C.;Liebermann, D.A.;OConnor, P.M.;Fornace, A.J., Jr.
  26. Cell v.74 p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Lowe, S.W.;Ruley, H.E.;Jacks, T.;Housman, D.E.
  27. 東醫寶鑑 許浚
  28. 抗癌中草藥大辭典 劉春安;彭明
  29. Exp. Mol. Med. v.33 Research technics for the cell cycle study Choi, Y.H.
  30. Jpn. J. Cancer Res. v.91 p53- independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Choi, Y.H.;Lee, W.H.;Park, K.Y.;Zhang, L.
  31. J. Biol. Chem. v.272 Regulation of cyclin D1 by calpain protease. Choi, Y.H.;Lee, S.J.;Nguyen, P.;Jang, J.S.;Lee, J.;Wu, M.L.;Takano, E.;Maki, M.;Henkart, P.A.;Trepel, J.B.
  32. Cancer Res. v.53 Specific proteolytic cleavage of poly(ADP- ribose) polymerase: an early marker of chemotherapy- induced apoptosis. Kaufmann, S.H.;Desnoyers, S.;Ottaviano, Y.;Davidson, N.E.;Poirier, G.G.
  33. Nature v.371 Cleavage of poly ADP-ribose polymerase by a proteinase with properties like ICE. Lazebnik, Y.A.;Kaufmann, S.H.;Desnoyers, S.;Poirier, G.G.;Earnshaw, W.C.
  34. Cell v.81 Yama/CPP32 , a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Tewari, M.;Quan, L.T.;O'Rourke, K.;Desnoyers, S.;Zeng, Z.;Beidler, D.R.;Poirier, G.G.;Salvesen, G.S.;Dixit, V.M.
  35. Cancer Metastasis. Rev. v.18 Cell adhesion molecules in the development and progression of malignant melanoma. Johnson, J.P.
  36. Br. J. Surg. v.87 E-cadherin- catenin cell-cell adhesion complex and human cancer. Wijnhoven, B.P.;Dinjens, W.N.;Pignatelli, M.
  37. Acta. Gastroenterol. Belg. v.62 The role of the E-cadherin/catenin complex in gastrointestinal cancer. Debruyne, P.;Vermeulen, S.;Mareel, M.
  38. Int. J. Oncol. v.17 Induction of apoptosis by ursolic acid through activation of caspases and down-regulation of c-IAPs in human prostate epithelial cells. Choi, Y.H.;Baek, J.H.;Yoo, M.A.;Chung, H.Y.;Kim, N.D.;Kim, K.W.
  39. Int. J. Biochem. Cell. Biol. v.31 Apoptosis-associated cleavage of β-catenin in human colon cancer and rat hepatoma cells. Fukuda, K.
  40. J. Biol. Chem. v.275 Apoptosis- induced cleavage of β-catenin by caspase-3 results in proteolytic fragments with reduced transactivation potential. Steinhusen, U.;Badock, V.;Bauer, A.;Behrens, J.;Wittman-Liebold, B.;Dorken, B.;Bommert, K.
  41. Nature v.391 Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Rosse, T.;Olivier, R.;Monney, L.;Rager, M.;Conus, S.;Fellay, I.;Jansen, B.;Borner, C.
  42. Cell v.75 Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Hockenbery, D.M.;Oltvai, Z.N.;Yin, X.M.;Milliman, C.L.;Korsmeyer, S.J.
  43. Blood v.92 Fas/APO-1 (CD95)-mediated apoptosis is activated by interferon-gamma and interferon- in interleukin-6 (IL-6)-dependent and IL-6-independent multiple myeloma cell lines. Spets, H.;Georgii-Hemming, P.;Siljason, J.;Nilsson, K.;Jernberg-Wiklund, H.
  44. Cell Death. Differ. v.7 CD 95-independent mechanisms of IL-2 deprivation-induced apoptosis in activated human lymphocytes. Hieronymus, T.;Blank, N.;Gruenke, M.;Winkler, S.;Haas, J.P.;Kalden, J.R.;Lorenz, H.M.
  45. Genes Cells v.3 Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Tsujimoto, Y.
  46. Oncogene v.17 Bcl-2 family proteins. Reed, J.C.
  47. Science v.275 The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Kluck, R.M.;Bossy-Wetzel, E,;Green, D.R.;Newmeyer, D.D.
  48. Biochim. Biophys. Acta. v.1449 Cyclic AMP induces inhibition of cyclin A expression and growth arrest in human hepatoma cells. Lee, J.;Choi, Y.H.;Nguyen, P.;Kim, J.S.;Lee, S.J.;Trepel, J.B.
  49. Int. J. Oncol. v.13 Genistein- induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells. Choi, Y.H.;Zhang, L.;Lee, W.H.;Park, K.Y.
  50. Cell v.67 Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Girard, F.;Strausfeld, U.;Fernandez, A.;Lamb, N.J.C.
  51. Nat. Cell Biol. v.1 Temporal and spatial control of cyclin B1 destruction in metaphase. Clute, P.;Pines, J.
  52. Eur. J. Cancer v.35 Control of the cell cycle and apoptosis. Lundberg, A.S.;Weinberg, R.A.
  53. Exp. Gerontol. v.35 Tumor suppressors and oncogenes in cellular senescence. Bringold, F.;Serrano, M.
  54. Cell. Mol. Life Sci. v.55 Functions of the MDM2 oncoprotein. Freedman, D.A.;Wu, L.;Levine, A.J.
  55. Oncogene v.18 mdm2: a bridge over the two tumour suppressors, p53 and Rb. Yap, D.B.;Hsieh, J.K.;Chan, F.S.;Lu, X.
  56. Curr. Pharm. Des. v.6 MDM2 oncogene as a novel target for human cancer therapy. Zhang-Wang, H.
  57. Trends Cell Biol. v.10 Regulation and function of the p53-related proteins: same family, different rules. Lohrum, M.A.;Vousden, K.H.
  58. Hum. Mol. Genet. v.2 Genetic analysis of the BRCA1 region in a large breast/ovarian family: refinement of the minimal region containing BRCA1. Kelsell, D.P.;Black, D.M.;Bishop, D.T.;Spurr, N.K.
  59. Proc. Natl. Acad. Sci. USA v.94 BRCA1 is a cell cycle-regulated nuclear phosphoprotein. Ruffner, H.;Verma, I.M.
  60. Int. J. Cancer v.77 Down-regulation of BRCA1 and BRCA2 in human ovarian cancer cells exposed to adriamycin and ultraviolet radiation. Fan, S.;Twu, N.F.;Wang, J.A.;Yuan, R.Q.;Andres, J.;Goldberg, I.D.;Rosen, E.M.
  61. Oncogene v.18 The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter. Chai, Y.L.;Cui, J.;Shao, N.;Shyam, E.;Reddy, P.;Rao, V.N.
  62. Exp. Cell. Res. v.264 The retinoblastoma gene: a prototypic and multifunctional tumor suppressor. Zheng, L.;Lee, W.H.
  63. Mol. Cell. Biol. v.19 BRCA1 is phosphorylated at serine 1497 in vivo at a cyclin-dependent kinase 2 phosphorylation site. Ruffner, H.;Jiang, W.;Craig, A.G.;Hunter, T.;Verma, I.M.
  64. Oncogene Regulation of BRCA1 and BRCA2 expression in human breast cancer cells by DNA-damaging agents. Andres, J.L.;Fan, S.;Turkel, G.J.;Wang, J.A.;Twu, N.F.;Yuan, R.Q.;Lamszus, K.;Goldberg, I.D.;Rosen, E.M.
  65. Cell v.88 Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Scully, R.;Chen, J.;Plug, A.;Xiao, Y.;Weaver, D.;Feunteun, J.;Ashley, T.;Livingston, D.
  66. Cell v.35 The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Dynan, W.S.;Tjian, R.
  67. Biochem. Biophys. Res. Commun. v.185 Cloning of the guinea pig 5-lipoxygenase gene and nucleotide sequence of its promoter. Chopra, A.;Ferreira-Alves, D.L.;Sirois, P.;Thirion, J.P.
  68. J. Biol. Chem. v.267 Induction of low density lipoprotein receptor and a transcription factor SP-1 by tumor necrosis factor in human microvascular endothelial cells. Hamanaka, R.;Kohno, K.;Seguchi, T.;Okamura, K.;Morimoto, A.;Ono, M.;Ogata, J.;Kuwano, M.
  69. J. Biol. Chem. v.269 Functional importance of an Sp1- and an NF$\kappa$B-related nuclear protein in a keratinocyte-specific promoter of rabbit K3 keratin gene. Wu, R.L.;Chen, T.T.;Sun, T.T.
  70. Calcif. Tissue Int. v.63 Polymorphism at the Sp 1 binding site in the collagen type I alpha 1 gene does not predict bone mineral density in postmenopausal women in sweden. Liden, M.;Wilen, B.;Ljunghall, S.;Melhus, H.
  71. J. Neurosci. v.14 Bidirectional promoter of human monoamine oxidase A (MAO A) controlled by transcription factor Sp1. Zhu, Q.S.;Chen, K.;Shih, J.C.
  72. J Biol Chem. v.274 The MEK pathway is required for stimulation of p21(WAF1/CIP1) by transforming growth factor-$\beta$. Hu, P.P.;Shen, X.;Huang, D.;Liu, Y.;Counter, C.;Wang, X.F.
  73. Trends Neurosci. v.20 The c-Jun transcription factor-bipotential mediator of neuronal death, survival and regeneration. Herdegen, T.;Skene, P.;Bahr, M.
  74. Chem. Biol. v.5 DNA bending and the curious case of Fos/Jun. McGill, G.;Fisher, D.E.
  75. Int. J. Oncol. v.16 The c-Jun N-terminal kinase pathway and apoptotic signaling. Chen, Y.R.;Tan, T.H.