Effects of Bojungchiseup-tang on Renal Expression of Water Channels, Na, K-ATPase and Nitric Oxide Synthase in Rats

보중치습탕의 백서 신장 수분채널, Na, K-ATPase, 산화질소 합성효소 발현에 미치는 영향

  • Kang Dae Gill (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Kim Jang Giun (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Kim Bok Hae (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Cho Dong Ki (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Sohn Eun Jin (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Ryu Do Gon (College of Oriental Medicine, Wonkwang University) ;
  • Lee Ho Sub (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University)
  • 강대길 (원광대학교 한의학전문대학원 한약자원개발학과) ;
  • 김종균 (원광대학교 한의학전문대학원 한약자원개발학과) ;
  • 김복해 (원광대학교 한의학전문대학원 한약자원개발학과) ;
  • 조동기 (원광대학교 한의학전문대학원 한약자원개발학과) ;
  • 손은진 (원광대학교 한의학전문대학원 한약자원개발학과) ;
  • 류도곤 (원광대학교 한의과대학) ;
  • 이호섭 (원광대학교 한의학전문대학원 한약자원개발학과)
  • Published : 2002.02.01

Abstract

The present study was examined the effects of Bojungchiseup-tang water extract on the renal expression of renal function regulatory proteins including aquaporin 2 (AQP 2), aquaporin 3 (AQP 3), Na, K-ATPase α1 subunit, endothelial nitric oxide synthase (ecNOS), and inducible nitric oxide synthase (iNOS) in rats. The renal expression of AQP 3 was attenuated in rats administered with Bojungchiseup-tang water extract without altered expression of AQP 2, while ecNOS was up-regualted. Oral administration of Bojungchiseup-tang water extract (40 ㎕/100 g) also attenuated the renal expression of Na, K-ATPase α1-subunit and iNOS protein. These results suggest that the diuretic and natriuretic effects of Bojungchiseup-tang maybe causely related with a decreased expression of AQP 3 and increased expression of ecNOS.

Keywords

References

  1. 장부변증논치 김완희;최달영
  2. 대한한의학회지 v.8 no.1 신기능에 대한 동서의학적 고찰 류도곤;이호섭;강순수;정우열
  3. 경희대학교논문집 v.11 수기병에 관한 문헌적 연구 성현제
  4. 醫林撮要 金世坤
  5. 동의방제와 처방해설 윤용갑
  6. 한방재활의학회지 v.8 no.1 태권도 선수의 체중감량시 신체조성 및 혈청지질 성분변화에 補中治濕湯이 미치는 영향 김범철;금동호;이명종
  7. 경희대학교 대학원 석사학위논문 補中治濕湯이 간 및 腎臟의 손상에 미치는 영향 조창섭
  8. 동의생리병리학회지 v.15 no.2 補中治濕湯의 백서 신장 기능에 미치는 영향 김종균;김유겸;유장현;이호섭
  9. Anal Biochem v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Bradford, M. M. https://doi.org/10.1016/0003-2697(76)90527-3
  10. 腎臟學 서울대학교 의과대학
  11. 生理學 김종규
  12. 人體生理學 김광진;김창주;김형진;박사훈
  13. 전정판 腎臟學 서울대학교 의과대학
  14. Pflugers Arch. v.329 The localization of the $Na^{+}-K^{+}$-ATPase in the cells of rat kidney cortex. A study on isolated plasma membranes. Kinne, R.;Schmitz, J. E.;Kinne, S. E. https://doi.org/10.1007/BF00586614
  15. Curr. Probl. Clin. Biochem. v.3 $Na^{+},K^{+}$-ATPase in the rat nephron related to sodium transport: results with quantitative histochemistry. Schmidt, U.;Dubach, U. C.
  16. J Biol Chem v.269 Na,K-ATPase. Lingrel, J. B.;Kuntzweiler, T.
  17. J. Biol. Chem. v.263 Tissue-specific and developmental regulation of rat Na,K-ATPase catalytic alpha iso form and beta subunit mRNAs. Orlowski, J;Lingrel, J. B.
  18. Kidney Int. v.57 no.4 Diminished adenylate cyclase activity and aquaporin 2 expression in acute renal failure rats. Kim, S. W.;Jeon, Y. S.;Lee, J. U.;Kang, D. G.;Kook, H.;Ahn, K. Y., Kim, S. Z., Cho, K. W.;Kim, N. H.; Han, J. S;Choi, K.C. https://doi.org/10.1046/j.1523-1755.2000.00008.x
  19. J. Clin. Invest. v.99 no.7 Upregulation of aquaporin-2 water channel expression in chronic heart failure rat. Xu, D. L.;Martin, P. Y.;Ohara, M.;St John, J.;Pattison, T.;Meng, X.;Morris, K.;Kim, J. K.;Schrier. R. W. https://doi.org/10.1172/JCI119312
  20. Kidney Int. v.53 Impaired auaporin and urea transporter expression in rats with adriamicine-induced nephrotic syndrome. Fernadez-llama, P.;Andrews, P.;Nielsen, S.;Ecelbarger, C. A.;Knepper, M. A. https://doi.org/10.1046/j.1523-1755.1998.00878.x
  21. J. Clin. Invest. v.102 no.1 An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. Mulders, S. M.;Bichet, D. G.;Rijss, J. P.;Kamsteeg, E. J.;Arthus, M. F.;Lonergan, M.;Fujiwara, M.;Morgan, K.;Leijendekker, R.;van der Sluijs, P.;van Os, C. H.;Deen, P. M. https://doi.org/10.1172/JCI2605
  22. Am. J. Physiol. v.277 no.3 Reduced abundance of aquaporins in rats with bilateral ischemia-induced acute renal failure: prevention by alpha-MSH. Kwon, T. H.;Frokiaer, J.;Fernandez-Llama, P.;Knepper, M.A.;Nielsen, S.
  23. Clin. Exp. Hypertens. v.22 no.5 Increased expression and shuttling of aquaporin-2 water channels in the kidney in DOCA-salt hypertensive rats. Lee, J. U.;Kang, D. G.;Kim, Y. J. https://doi.org/10.1081/CEH-100100089
  24. Kidney Int. v.45 no.4 Location of an inducible nitric oxide synthase mRNA in the normal kidney. Morrissey, J. J.;McCracken, R.;Kaneto, H.;Vehaskari, M.;Montani, D.;Klahr, S. https://doi.org/10.1038/ki.1994.135
  25. Am. J. Physiol. v.275 no.3 Neuronal nitric oxide synthase is expressed in principal cell of collecting duct. Wang, X.;Lu, M.;Gao, Y.;Papapetropoulos, A;Sessa, W. C.;Wang, W.
  26. Hypertension v.21 no.6 Genomic analysis and expression patterns reveal distinct genes for endothelial and brain nitric oxide synthase. Sessa, W. C.;Harrison, J. K.;Luthin, D. R.;Pollock, J. S.;Lynch, K. R. https://doi.org/10.1161/01.HYP.21.6.934
  27. Am. J. Physiol. v.261 no.6 Effects of NG-nitro-L-arginine methyl ester on renal function and blood pressure. Lahera, V.;Salom, M. G.;Miranda-Guardiola, F.;Moncada, S.;Romero, J. C.
  28. Hypertension v.23 no.6 Nitric oxide regulates renal hemodynamics and urinary sodium excretion in dogs. Manning, R. D.;Hu, J. L. https://doi.org/10.1161/01.HYP.23.5.619
  29. Kidney Int. v.46 Endogenous nitric oxide synthesis determines sensitivity to the pressor effect of salt. Tolins, J. P.;Shultz, P. J. https://doi.org/10.1038/ki.1994.264
  30. Hypertension v.25 no.4 Relation between pressure natriuresis and urinary excretion of nitrate/nitrite in anesthetized dogs. Majid, D. S. A.;Godfrey, M.;Grisham, M. B.;Navar, L. G. https://doi.org/10.1161/01.HYP.25.4.860
  31. Circulation v.91 no.4 Direct measure- ments of endothelium-derived nitric oxide release by stimulation of endothelin receptors in rat kidney and its alteration in salt-induced hypertension. Hirata, Y.;Hayakawa, H.;Suzuki, E.;Kimura, K.;Kikuchi, K.;Nagano, T.;Hirobe, M.;Omata, M., https://doi.org/10.1161/01.CIR.91.4.1229
  32. Hypertension v.10 no.7 Deficient production of nitric oxide induces volume-dependent hypertension. Lahera, V.;Salazar, J.;Salom, M. G.;Romero, J. C. https://doi.org/10.1097/00004872-199212007-00018
  33. Am. J. Physiol. v.274 no.5 Dietary sodium affects systemic and renal hemodynamic response to NO inhibition in healthy humans. Bech, J. N.;Nielsen, C. B.;Ivarsen, P.;Jensen, K. T.;Pedersen, E. B.
  34. Biochem. Biophys. Res. Commun. v.196 no.3 Differential expression of iNOS and cNOS mRNA in human vascular smooth muscle cells and endothelial cells under normal and inflammatory conditions. MacNaul, K. L.;Hutchinson, N. I. https://doi.org/10.1006/bbrc.1993.2398
  35. J. Clin. Invest. v.100 no.2 Inhibition of constitutive nitric oxide synthase (NOS) by nitric oxide generated by inducible NOS after lipopolysaccharide administration provokes renal dysfunction in rats. Schwartz, D.;Mendonca, M.;Schwartz, I.;Xia, Y.;Satriano, J.;Wilson, C. B.;Blantz, R. C. https://doi.org/10.1172/JCI119551