Establishment of the Heart Failure Model in Swine for the Experiment of the Pneumatic Ventricular Assist Device

공압식 심실보조기의 실험을 위한 돼지에서의 심부전 모델의 개발

  • Published : 2003.03.01

Abstract

Background: In order to develop the acute heart failure model for the animal experiment of the pneumatic ventricular assist device, we decided to use young pig whose coronary artery distribution is almost the same as humans and also very cheap in price. The purpose of this study is to develop stable, reproducible acute ischemic heart failure model in swine using coronary artery ligation method. Material and Method: Five young pigs whose weights are the same as adult humans are under experiment. Each pig was under endotracheal intubation and connected to a mechanical ventilator. Through left lateral thoracotomy, we exposed the heart and induced ischemic heart failure by coronary artery ligation. The ligation began at the distal part of the left anterior descending coronary artery. After 5 minutes of initial ligation we reperfused the artery and then re-ligated. Before and after each ligation-reperfusion procedure we assessed the left ventricular end-diastolic pressure, arterial pressure, and cardiac index. We also measured left ventricular end-diastolic dimension, end-systolic dimension, fractional shortening, ejection fraction using intraoperative epicardial echocardiography. After appropriate heart failure was established with sequential (from distal part of LAD to proximal location) ligation-reperfusion-ligation procedure, we inserted the ventricular assist device and operated. Result: We established stable acute ischemic heart failure in 3 of 5 young pigs with this sequential ligation-reperfusion-ligation procedure, and could maintained 50% less ejection fraction before the procedure according to intraoperative epicardial echocardiography. We also observed no ventricular arrhythmia usually associated with simple coronary artery ligation in large animals and no cardiac arrest associated with ventricular arrhythmia or myocardial stunning. In pathologic specimen, we observed scattered ischemic myocardium in all around the ischemic field induced by coronary artery ligation. Conclusion: Under the concept of ischemic preconditioning, we developed safe and reproducible acute ischemic heart failure model in swine using sequential coronary artery ligation-reperfusion-ligation method.

배경: 공압식 심실보조기의 실험을 위한 심부전 모델을 개발하는 데 있어서 사람의 심장구조와 유사하고 저렴하며 일관되게 반복적으로 급성심부전을 유발할 수 있는 방법을 찾기 위해 본 연구진은 사람의 심장구조와 가장 유사하며 저렴한 돼지를 사용하여 관상동맥의 좌전하행지를 결찰하는 방법으로 급성심부전을 유발시키고자 하였다. 대상 및 방법: 성인의 몸무게에 해당하는 5마리의 돼지를 사용하여 전신마취 후 좌측개흉술을 통하여 심장을 노출시키고 관상동맥의 좌전하행지의 원위부에서 시작하여 근위부로 올라오면서 결찰, 재관류, 결찰의 방법으로 심부전을 유발시켰다. 각 과정의 전, 후에 좌심실확장기말기압력, 동맥압, 심박출계수를 측정하였고, 심외막 심에코도를 통하여 좌심실확장기내경, 좌심실수축기내경, 분획단축, 심구혈률을 측정하였다. 이와 같은 과정을 좌전하행지의 원위부부터 근위부까지 충분한 심부전이 달성될 때까지 반복하였으며 목표달성 후 심실보조기를 장착하여 구동시켰다. 결과: 5마리 중 3마리에서 안정적인 심부전을 달성할 수 있었으며 3마리 모두에서 심외막 심에코도상 심구혈률을 기준으로 관상동맥 결찰 전에 비하여 50% 정도의 심기능 저하를 유지 할 수 있었다. 또한 결찰, 재관류, 결찰의 방법을 통하여 심근에 대해 허혈성 전처치를 시행한 후 완전 결찰을 시행하였을 때 대동물의 관상동맥 결찰 시 흔히 발생하는 심실성 부정맥이나 심관기절에의한 심정지도 관찰되지 않았으며 병리조직학적 소견상 심근허혈을 유발시킨 좌, 우심실의 심첨부에서 중간부위까지 광범위한 허혈성 손상을 입은 심근세포들을 확인할 수 있었다. 결론: 허혈성 전처치의 개념을 관상동맥 결찰을 통한 심부전 모델에 적용하여 좌전하행지의 원위부에서부터 근위부 까지 순차적으로 결찰, 재관류, 결찰을 시도한 결과 안정적이고 반복 가능한 급성 심부전 모델을 얻을 수 있었다.

Keywords

References

  1. 대흉외지 v.34 양에서 좌측 개흉술 하에 완전인공심장의 체내이식형 양심실 보조장치로 사용에 관한 연구 원태희;민병구;김원곤
  2. 대흉외지 v.32 공압식 심실보조기의 동물실험 박성식;김삼현;서필원(등)
  3. Ann Thorac Surg v.67 Clinical experience with 111 Thoratec ventricular assist devices McBride LR;Naunheim KS;Fiore AC;Moroney DA;Swartz MT. https://doi.org/10.1016/S0003-4975(99)00246-5
  4. Tex Heart J v.25 The heartmate left ventricular assist system. Overview and 12-year experience Frazier OH;Myers TJ;Radovancevic B.
  5. J Thorac Cardiovasc Surg v.117 Mechanical circulatory support for one thousand days or more with the Novacor N100 left ventricular assist device Dohmen PM;Laube H;de Jonge K;Baumann G;Konertz W. https://doi.org/10.1016/S0022-5223(99)70390-9
  6. Artif Organs v.23 Ultracompact completely implantable permanent use electromechanical ventricular assist device and total artificial heart Honda N;Inamoto T;Nogawa M;Takatani S. https://doi.org/10.1046/j.1525-1594.1999.06327.x
  7. Cardiovasc Res v.19 Experimental models of heart failure Smith HJ;Nuttall A. https://doi.org/10.1093/cvr/19.4.181
  8. J Thorac Cardiovasc Surg v.75 Response to experimental coarctation of aorta and pulmonary stenosis in fetal lamb Burrington JD
  9. Cardiovasc Res v.24 Adriamycin cardiomyopathy in the rabbit: alternations in contractile proteins and myocyte function Jones SM;Kirby MS;Harding SE(et al.) https://doi.org/10.1093/cvr/24.10.834
  10. Circulation v.75 Experimental congestive heart failure produced by rapid ventricular pacing in the dog: cardiac effects Wilson JR;Douglas P;Hickey WF(et al.) https://doi.org/10.1161/01.CIR.75.4.857
  11. Am Heart J v.66 Effects of acute coronary occlusion on performance of right and left ventricles in intact unanesthetized dogs Rushmer RF;Watson N;Harding D. https://doi.org/10.1016/0002-8703(63)90385-5
  12. Trans Am Artif Intern Organs v.5 Sustained heart failure induced by repeated microsphere injections fof left ventricular assist device testing Moritz A;Fujimoto LK;Wollenek G(et al.)
  13. Cardiovasc Res v.21 Species variation in the coronary collateral circulation during regional myocardial ischemia: a critical determinanl of the rate of evolution and extent of myocardial infarction Maxwell MP;Hearse DJ;Yellon DM. https://doi.org/10.1093/cvr/21.10.737
  14. Dis Chest v.46 A comparative study in three dimensions of the blood supply of the normal interventricular septum in human, canine, bovine, porcine, oving and equine heart Bertho E;Gagnon G. https://doi.org/10.1378/chest.46.3.251
  15. Ann Thorac Surg v.55 Dynamic cardiomyoplasty in chronic left ventricular failure: a experimental model Millner RWJ;Burrows M;Pearson I;Pepper JR. https://doi.org/10.1016/0003-4975(93)91027-K
  16. Ann Thorac Surg v.52 Experimental model of left ventricular failure Millner RWJ;Mann JM;Pearson I;Pepper JR. https://doi.org/10.1016/0003-4975(91)91424-T
  17. 대흉회지 v.5 양에서 관상동맥 결찰에 의한 심부전 모델의 확립 나찬영;홍장수;박정준;김원곤;강문철;서정욱
  18. Angiology v.13 Collateral circulation following experimental gradual narrowing of the coronary arteries Lumb G;Singletary HP;Hardy LB.
  19. Circulation v.27 Collateral circulation and survival related to gradual occlusion of the right coronary artery in the pig Lumb G;Hardy LB. https://doi.org/10.1161/01.CIR.27.4.717
  20. Am J Cardiol v.47 Defining the anatomic perfusion bed of an occluded coronary artery, and the region at risk to infarction. A comparative study in the baboon, pig, and dog Geary GG;Smith GT;McNamara JJ. https://doi.org/10.1016/0002-9149(81)90253-8
  21. Cardiovasc Res v.20 A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man Weaver ME;Pantely GA;Bustow JD;Ladley HD. https://doi.org/10.1093/cvr/20.12.907
  22. Circulation v.74 Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium Murry CE;Jennings RB;Reimer KA. https://doi.org/10.1161/01.CIR.74.5.1124
  23. Circulation v.84 Protection against infarction offorded by preconditioning is mediated by Al adenosine receptors in rabbit heart Liu GS;Thornton J;Van Winkle DM;Stanley AWH;Olsson RA;Downey JM. https://doi.org/10.1161/01.CIR.84.1.350
  24. Circulation v.88 Cardiacstress Protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction Marber MS;Latchman DS;Walker JS;Yellon DM. https://doi.org/10.1161/01.CIR.88.3.1264
  25. Am J Phsiol v.276 Acute exercise can improve cardioprotection without increasing heat shock protein content Taylor RP;Harris MB;Starnes JW.
  26. Circulation v.99 Myocardial protection conferred by electromagnetic fields DiCarlo AL;Farrell JM;Litovitz TA. https://doi.org/10.1161/01.CIR.99.6.813
  27. Br Heart J v.74 Preconditioning: a balanced perspective Przyklenk K;Kloner RA. https://doi.org/10.1136/hrt.74.6.575