Fine Structural Analysis of the Cocoon Silk Production in the Garden Spider, Argiope aurantia

  • Moon, Myung-Jin (Department of Biological Science, College of Advanced Sciences, Dankook University)
  • Published : 2003.03.01

Abstract

The principal fibers used in constructing the cocoon in the garden spider, Argiope aurantia, are large-diameter fibers developed from tubuliform glands and small-diameter fibers presumed to be spun by the aciniform silk glands. Scanning electron micrographs of the large-diameter fibers on both surfaces of the cocoon clearly reveal their fine structural differences. While the silk fibers on the inner surface have smooth and homogeneous appearances, each fiber on the outer surface represents a multicomponent internal structure. Examination of each fibers using transmission electron microscope also provides additional evidence that the multicomponent fibers contain numerous electron lucent fibrils embedded in an amorphous electron dense matrix. It has been also revealed that two types of secretory granules presumed to be the precursors of tubuliform fibers are closely related to the production of distinct coloration in luminal contents - brownish and yellowish components. Moreover, these electron-dense granules, possibly precursor of fibrillar component, and electron-lucent granules, possibly precursor of matrix component, are densely packed and remain close to each other without fusion. It is critical evidence that the individual tubuliform fiber is not only heterogeneous and multicomponent but also takes place in a variety at manners throughout the length of the gland.

Keywords

References

  1. Booker H (1983) Untersuchungen zur Biologie der Wespenspinne (Argiope bruennichi Scopoli) (Araneae: Araneidae). Zool An 210: 111-133
  2. Cande as GC and Cintron J (1981) A spider (Nephila clavipes) fibroin and its synthesis. J Exp Zoo/ 216: 1-6 https://doi.org/10.1002/jez.1402160102
  3. Cande as GC and Lopez F (1983) Syntheis of fibroin in the cultured glands of Nephila clavipes. Comp Biochem Physiol 74B: 637-642
  4. Foradcri MJ, Kovoor J, Moon MJ, and Tillinghast EK (2002) Relation between the outer cover of the egg case of Argiope aurantia (Araneae: Araneidae) and the emergence of its spidenings. J Morphol 252: 218-226 https://doi.org/10.1002/jmor.1100
  5. Gertscn WJ (1979) American Spiders. Van Nostrand Reinhold, New York
  6. Groome JR, Townley MA, de Tschaschell M, and Tillinghast EK (1991) Detection and isolation of proctolin-like immunoreactivity in arachnids: possible cardioregulatory role for proctolin in the orb-weaving spiders Argiope and Araneus. J Insect Physiol 37: 9-19 https://doi.org/10.1016/0022-1910(91)90013-P
  7. Hieber CS (1985) The insulation layer in the cocoons of Argiope aurantia (Araneae: Araneidae). J Therm Biol 10: 171-175 https://doi.org/10.1016/0306-4565(85)90023-3
  8. Hieber CS (1992) Spider cocoons and their suspension systems as barriers to generalist and specialist predators. Oecologia 91: 530-535 https://doi.org/10.1007/BF00650327
  9. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27: 137A
  10. Kovoor J (1987) Comparative structure and histochemistry of silk-producing organs in Arachnids. In: Nentwig W (ed) Ecobiology of Spiders, Springer-Verlag, Berlin, pp 159-186
  11. Kovoor J and Peters HM (1988) The spinning apparatus of Polenecia producta (Araneae: Uloboridae): structure and histochemistry. Zoomorphology 108: 47-59 https://doi.org/10.1007/BF00312214
  12. Moon MJ (1998a) Fine structure of the ampullate silk glands in the wolf spider, Pardosa astrigera (Araneae: Lycosidae). Korean J Biol Sci 2: 513-520 https://doi.org/10.1080/12265071.1998.9647454
  13. Moon MJ (1998b) Changes of tubuliform silk glands during the cocoon production in the garden spider, Argiope aurantia. Korean J Electr Microsc 28: 539-550
  14. Moon MJ and Kim WK (1989) Ultrastructural study on the tubuliform glands in Nephila clavata L. Koch (Araneae: Araneidae). Korean Arachnol 5: 43-55
  15. Moon MJ, Kim TH, Townley MA, and Tillinghast EK (1999) Fine structural analysis of the capture thread production in the black widow spider, Latrodectus mactans. Korean J Entomol 29: 225- 232
  16. Peters HM (1987) Fine structure and function of capture threads. In: Nentwig W (ed) Ecobiology of Spiders, Springer-Verlag, Berlin, pp 187-202
  17. Peters HM (1993) Functional organization of the spinning apparatus of Cyrtophora citricola with regard to the evolution of the web (Araneae: Araneidae). Zoomorphology 113: 153-163 https://doi.org/10.1007/BF00394856
  18. Peters HM and Kovoor J (1989) Die Herstellung der Eierkokons bei der Spinne Polenecia producta (Simon, 1873) in Beziehung zu den Leistungen des Spinnapparates. Zool J Abteil Allgene Zool Physiol Tier 93: 125-144
  19. Schimkewitsch W (1884) Etude tour I'anatomie de I'Epeire. Annales des Sciences Naturelles. Zool Paleontol 17: 1-94
  20. Sekiguchi K (1955) Differences in the spinning organs between male and female adult spiders. Sci Rep Tokyo Kyoiku Daigaku, Sec B 8: 23-32
  21. Stubbs DG (1991) Studies on the chemical composition, morphology, and production of the cocoon of the black and yellow garden spider Argiope aurantia (Lucas). Ph.D thesis, University of New Hampshire, Durham, NH, USA
  22. Stubbs DG, Tillinghast EK, Townley MA, and Cherim NA (1992) Fibrous composite structure in a spider silk. Naturwissenschaften 79: 231-234 https://doi.org/10.1007/BF01227136
  23. Tillinghast EK, Kavanagh EJ, and Kolbjornsen PH (1981) Carbohydrates in the webs of Argiope spiders. J Morphol 169: 141-148 https://doi.org/10.1002/jmor.1051690202
  24. Tillinghast EK and Townley MA (1987) Chemistry, physical properties, and synthesis of Araneidae orb webs. In: Nentwig W (ed) Ecobiology of Spiders. Springer-Verlag, Berlin, pp 203-210
  25. Tillinghast EK and Townley MA (1994) Silk glands of araneid spider: Selected morphological and physilogical aspects. In: Silk Polymers: Materials Science and Biotechnology, American Chemical Society, New York, pp 29-44