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Efficient Tracking of a Moving Object using Optimal
Representative Blocks

Wan-Cheol Kim, Cheol-Ho Hwang, and Jang-Myung Lee

Abstract: This paper focuses on the implementation of an efficient tracking method of a
moving object using optimal representative blocks by way of a pan-tilt camera. The key idea is
derived from the fact that when the image size of a moving object is shrunk in an image frame
according to the distance between the mobile robot camera and the object in motion, the
tracking performance of a moving object can be improved by reducing the size of
representative blocks according to the object image size. Motion estimations using Edge
Detection (ED) and Block-Matching Algorithm (BMA) are regularly employed to track objects
by vision sensors. However, these methods often neglect the real-time vision data since these
schemes suffer from heavy computational load. In this paper, a representative block able to
significantly reduce the amount of data to be computed, is defined and optimized by changing
the size of representative blocks according to the size of the object in the image frame in order
to improve tracking performance. The proposed algorithm is verified experimentally by using a
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two degree-of-freedom active camera mounted on a mobile robot.

Keywords: Optimal representative blocks, perspective transformation, active camera.

1. INTRODUCTION

Many measurement devices have been created that
are similar to the human senses. Some of them even
demonstrate superior abilities than the human senses
when applied to specific industries. Visual sensors
have been recently developed due to improvements in
computer performance necessary for the computation
of enormous quantities of information. In fact, image
tracking research has been applied to industrial robot
vision, military precision guided weapons, ITS
(Intelligent Traffic Systems) and IVS (Intelligent
Vehicle Systems).

In this paper, we suggest a new tracking method
for moving objects using mobile robots. Generally,
for real-time object tracking, ED (Edge Detection)
and BMA (Block Matching Algorithm) have
traditionally been employed [1]. In the ED method, a
great deal of time is spent on object recognition
because of the numerous pixels in the high-resolution

Manuscript received October 10, 2002; revised June 10,
2003; accepted August 18, 2003. Recommended by Editorial
Board member Whee-Kuk Kim under the direction of Editor
Chung Choo Chung.

Wan-Cheol Kim was with Pusan National University,
Department of Electronics Engineering, 30 Changjeon-dong,
Kumjeong-Ku, Pusan, 609-735, Korea (e-mail: maldug2
@msn.cm).

Cheol-Ho Hwang and Prof. Jang-Myung Lee are with
Pusan National University, Department of Electronics
Engineering, 30 Changjeon-dong, Kumjeong-Ku, Pusan, 609-
735, Korea (e-mail: {chhwang, jmlee}@pusan.ac kr).

images. Specifically, in a convolution operation step,
the system operations related to the memory take too
much time and then there are several cases where
real-time vision data are lost because of slow image
processing. In the BMA method, motion estimation is
calculated with the matched block information [2-4].
This includes motion estimation by investigating the
maximum correlation between a former frame (n-1)
block data and a present frame (n) block data. MAD
(Mean Absolute Difference) and MSD (Mean
Squared Difference) are generally utilized for the
BMA [5-8]. The BMA method has a quicker
operation speed than the ED method. However, it has
one drawback that local minima happen unexpectedly
[1, 9]. Moreover, in the BMA method, a fixed camera
is mainly used and the block size is also kept constant
[10]. Therefore, these systematic constraints cause
low object-tracking performance for mobile robots.
The purpose of this paper is to improve the tracking
performance in the above-mentioned applications that
use the methods of ED and BMA. The proposed
method has two advantages in regards to object
tracking. One is the improvement of speed during
image processing and the other is improvement of
object recognition ability. These enhancements can be
acquired by using RB (Representative Block),
especially the variable size RB that is newly proposed
in this paper. Using a 2-DOF (Degree Of Freedom)
active camera mounted on a mobile robot, we
demonstrated that high tracking performance could be
obtained with the variable size RB. The advantages of
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the variable size RB are particularly and remarkably
demonstrated when the various sizes of objects exist in
an image plane.

This paper is composed of the following sections:
Section 2 explains the BMA method whose
performance is compared with the optimal RB, and
Section 3 includes the definition of the RB. The size
determination of the RB is mentioned in Section 4,
which defines the optimal RB. Section 5 deals with
experiments using the RB and displays the results.
Finally, we summarize our ideas in Section 6.

2. BLOCK MATCHING ALGORITHM

Frames n and n-1 are often referred to as the
present frame and previous frame, respectively. In the
BMA method, the present frame of the sequence is
divided into rectangular or square blocks of pixels.
For each block in the current frame, we look for the
block of pixels that is the closest to the block in the
previous frame, according to the predetermined
criterion. The relation between the consecutive two
corresponding blocks describes a motion vector.

The best match can be found by minimizing a
distortion measurement through criterion, such as the
MAD (Mean Absolute Difference) and MSD (Mean
Square Difference), or by maximizing a correlation
function of the two blocks. Matching of the blocks can
be quantified according to various criteria including
the maximum cross-correlation, the minimum MSD,
the minimum MAD and the maximum MPC
(Matching Pixel Count) [10, 11]. Several matching
criteria for BMA are summarized below:

(a) Mean Absolute Difference (MAD)
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Fig. 1. Block matching algorithm.

(¢) Cross-Correlation Function (CCF)
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where L, ; and L, represent values of the pixel in
n—1th and »th frame, respectively and (u,v) is a

search point in the search area.

Among the above matching criteria, CCF and
MSD require comparison and multiplication while
the others require comparison and accumulation.
Since multiplication generally requires a greater
degree of hardware complexity than comparisons, it
is more expensive to implement multiplication. MAD
is most widely used due to its lower complexity,
while its performance is comparable to that of MSD.
Although MPC requires less hardware complexity
than MAD, its performance is quite sensitive to the
threshold value selected [10]. So in this paper, we use
the MAD method as a comparison with RB.

In Fig. 1, the motion vector of the dark object is
easily computed because the displacement of the
object is bigger than the size of block. However, the
motion vector of the grey object may have been lost
because the object displacement is smaller than the
block size. If we mainly focus on the object region,
we can use the cross-correlation rather than MAD or
MSD, although it is difficult for cross-correlation
criteria to locate the motion vector because of the
real-time heavy computational burden. Therefore, in
this paper, we have defined RB (Representative
Block) and applied an optimal RB to maintain the
motion vector. The optimal RB has been verified in
this paper to provide high performance for real-time
moving object tracking.

3. REPRESENTATIVE BLOCK MODEL

The other algorithms demonstrated low
performance due to the multitude of operations
required to achieve accurate object recognition and
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Fig. 2. Representative Block (RB).
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the numerous problems related to real-time object
tracking. In this paper, our main interest is in moving
vector elements.

The moving vector elements of an object are
represented in Fig. 2 (a), which are converted to a
block and shown as Fig. 2 (b). Here, detection of the
movement vector through simplification is the focus.
The object in Fig. 2 (a) can be distinguished from the
background through gray block sampling as shown in
Fig. 2 (c). Fig. 2 (d) represents the simplified object
region represented as the representative blocks. On
the whole, Fig. 2 (a) can be represented as Fig 2 (b).
Therefore, the gray blocks are defined as RB
(Representative Block) and the block (2x2) is
representative of the larger block in Fig. 2 (d).

As shown in Fig. 2, when the image data are
processed in each pixel unit, the dimension of image
processing is increased by 16 times. Therefore, for
both to decrease the dimension of data processing
and to improve the image data processing speed, the
RB (Representative Block) is defined. Since RB
covers its neighboring pixels, the region of RB and
its neighbor is defined as Syp which is generally

represented as,
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where Spp is an N x N square matrix, Spp € RV,
and sub-matrix Spp 1s an (N—-k) by (N-k)
with a half
dimension of S,z , which is defined as the RB.
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(a) Original image.

(b) Image with the RB.

Fig. 3. Original image and image represented by the
RB.

The calculation load in the image processing can
be reduced since we use only the RB to track the
moving object. Actually, only the RB is read from the
image buffer in the vision board and the operation is
adapted to the RB. Therefore, the computational cost
is reduced remarkably by utilizing the RB. In the
BMA method, an image is divided into those blocks
and every pixel within the blocks is computed.
However, when we utilize the RB, the blocks are
shrunk to RB’s, which reduces the computational
load to a quarter.

Fig. 3 illustrates an original image and an image
represented by the RB. In the BMA method, the
motion vector is located by using MAD, MSD or
Cross-Correlation. In this paper, when the optimal
RB is used, we have used the True or False concept.
True or false presents existence or nonexistence of an
object in the RB, respectively. We have also assumed
that the information of a moving object in uniform
surroundings has been obtained prior. If the pixels
corresponding to the object are more than 50% in the
RB, it is assigned to the True and the image for the
RB is displayed as black. If the pixels corresponding
to the object are less than 50% in the RB, it is
assigned to the False and the corresponding region is
displayed as white. When a RB is assigned to the
True method, it is considered as including the
object’s information, and we compute the center
point of the object as:

1 1
(%05 Y0 In-1 :[;sza;zzysj, (6)

where (xp,¥p),-1 1s the center point of the object
in then—1th frame and m is the number of the RB
as True and (x,,y,) is the center point of the RB’s in
the True. In the same way, we find the RB’s in the
True and the center point of the object(xy,¥5), in
the nth frame. After we have found the RB’s as the
True and the center point of the object(xp,y), in
the n th frame, the motion vector is calculated simply
by subtracting (xg,3p),.1 from (x5,¥0),-



498 International Journal of Control, Automation, and Systems Vol. 1, No. 4, December 2003

4. OPTIMAL REPRESENTATIVE BLOCK

The size of RB should be adjusted according to the
size of the object in the image plane. Since the object
is moving, in the image plane, the size and shape of
the object can be changed due to the distance and
angle between the camera and the object. Of course,
the object image size becomes smaller when the
object moves farther away and the image size
becomes larger when the object moves closer. The
shape and size of the object can be changed as the
camera’s angle changes. So, in this work, we selected
a small ball because a ball is always shown as a circle
from all directions, and we can obtain the ball size
using distance information. As a result, we can
predict the ball size by using perspective
transformation in the kinematics of a two DOF active
camera [12-14].

4.1 Perspective transformation

Perspective transformation (also called imaging
transformation) projects 3-D points onto a plane.
Perspective transformation plays a central role in
image processing because it describes mathematically
how an image is formed by viewing a 3-D world.

Fig. 4 illustrates a perspective model of the image
process. The camera coordinate system(x,y,z) has
the image plane coincident with the xy plane and the
optical axis (established by the center of the lens)
along the =z axis. Thus, the center of the image plane
is at the origin, and the center of the lens is at
coordinates (0,0, 1) . If the camera is in focus for a

distant object, A is the focal length of the lens. Here
the assumption is that the camera coordinate system
is aligned with the world coordinate system (X,Y,Z).

Let (X,Y,Z)be the world coordinates of any

point in a 3-D scene, as shown in Fig. 4. Throughout
the following discussion we assume that Z > A ; that
is, all points of interest lie in front of the lens. The
first step is to obtain a relationship that provides the
coordinates (x,y) of the projection of the point

(X,Y,Z) onto the image plane. This is easily

accomplished by the use of similar triangular
properties. With reference to Fig. 4,
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Fig. 4. Perspective model of the imaging process.
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where the negative sign implies that X and Y

indicate the image points, which are actually inverted.
Now the image-plane coordinates of the projected 3-
D point follow directly from as,

AX
= , 8-1
Y=-— (8-1)
AY
=2 8-2
Y=oz (8-2)

4.2 Ball size

The active camera on the mobile robot is
configured so that the ball information exists in the
middle of the input image at all times. Therefore, as
the mobile robot moves closer to the target, the
adjustment of the pan and tilt angle of the active
camera in the robot system enables the information of
the target to be directly in the center of the input
image at all times. Hence, both the ball center and the
center of the camera lens are continually positioned

on the Z -axis as shown in Fig. 5. Note that (X;,Y;)
and (X),Y)), determine the ball diameter. The ball

size on the image frame can be changed by only
the Z,, which is the distance between the ball and the

camera. First of all, we can obtain Z_, (camera
height) and &, (tilt angle) by using the kinematics of

the 2-DOF active camera mounted on the mobile
robot to obtain R , the radius of the ball. The

corresponding points on the image plane, (x;,¥,)

and (x;,y|), can be computed as follows:

AX AY,
(x()’y()):( 9 9'—())’ (9_1)
A-Zy A-2,
AX Ay
(xpyl):( L a‘_l-): (9-2)
A-Zy A-Z,
where Z is
Zy=A+ Zecd _ R . (10)

sind, cos(% -0, )

Using the point values, (x,,¥y) and (x;,¥), we
can calculate the radius of the ball from the circle
equation
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Fig. 5. Distance between robot camera and ball.
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where r is the radius of the ball in the image frame.
We are presently going to determine the size of the
RB proportional to the radius of the ball on the image
plane.

4.3 Optimal representative block
The size of RB can be adjusted according to the
size of the ball in the image frame, namely the

distance between the ball and the camera on the robot.

In this paper, the size of RB is selected so as to
maintain the constraints of utilizing a 320x240 pixel
image and the size of the ball in the image plane is
represented by the natural number.

Fig. 6 represents the algorithm of the optimal RB.
First, the size of the ball is obtained in an image
plane. The optimal RB is initially determined by the
radius of the ball from points through (7~12). When
the ball moves, the 2-DOF active camera begins to
track the center point of the ball, which can be
calculated by the pre-mentioned center of the RB, to
align it with the center of the camera lens by
changing both pan and tilt angle. Z,, the distance

between the ball and the camera, is estimated through
pan and tilt angles, and finally optimal RB is
obtained by the ball’s radius, which can be calculated
via Z,,. Similarly, when the ball continuously moves,

Z, is estimated by using the pan and tilt angles and
then the radius of the ball is computed from Z,.

Therefore, the optimal RB can be acquired from the
ball radius.

Half of the object’s size, Spp is approximated as

Stant

Initialize the radius of the
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Estimate the radius
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Fig. 6. Algorithm to determine the RB.
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Fig. 7. Examples with different sizes of RB’s.

a square, that is, Spp =(quo-4)x(quo-4). Now the
size of optimal RB, S, is decided by the two

conditions so as not to lose the moving object. The
first condition is that it should satisfy the constraint:

Sppx22v, (13)

where Spp is the size of the RB and r is the

radius of the ball. Equation (13) provides the minimal
size of the object to be recognizable in the image
plane with the RB’s.

The second condition is that the size, Spp, should

be the multiple of 4 in order to fit into the image
frame of 320 x 240 pixels.

According to the first condition, Fig. 7 (a) shows
the case in which the RB is too big compared to the
ball such that it doesn’t satisfy the condition of (13).
Note that in this instance there are several occasions
where the ball existence cannot be missed. Fig. 7 (b)
shows the occurrence of the ball size being large
enough compared to the size of RB, which satisfies
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240

320
unit: pixel

Fig. 8. When Sjp =6, there exists uncovered region
by the RB’s.

Fig. 9. Experimental mobile robot.

(13). The black squares are the RB’s recognized as
True in Fig. 7. If we choose the smaller RB than the
half of the ball’s radius, the number of the RB’s in the
True may increase for the ball. This may result in the
increase of the computational load to calculate the
center point of RB’s in the True. Consequently, the
optima! size of RB is chosen as the half of the ball’s
radius in order to minimize the computational load.
According to the second condition, the optimal RB
size should be a multiple of 2 in order to satisfy (13)
as well as be half ofS,;. So, Syp should be a

multiple of 4 and identical with the radius of the ball
by (5) and (13). Therefore, if the ball’s radius is not a
multiple of 4 in the image plane, we should
approximate the radius of the ball to a multiple of 4
using the remainder and the quotient, the radius
dividing by 4, as illustrated in Fig. 6.

In this paper, the RB has a square matrix form and
the size should be a multiple of 2 among measures of
40 that is half of the largest common measure of 320
and 240 to divide the image data in 320x240 pixels
into integer numbers of blocks. Therefore, the sizes
of 2, 4, 8, 10, 20 and 40 satisfy this condition. To
keep the constraint, it is difficult to increase the size
of RB linearly proportional to the ball size. Therefore,
we may choose the RB size as a multiple of 2,
including the even numbers between 2 and 40, if
necessary. By this inclusion, all of the sub-blocks
may not have the same size, which is illustrated by
Fig. 9.

As shown in Fig. 8, for an example, when the size
of RB is 6, we may assign the margins of 4 pixels to
the left and the right sides. These parts can be
excluded in the image processing to make the
numbers of RB integer. When the size of RB is 6
(pixels), the diameter of the ball is represented in 24

pixels. Even though only 312x240 pixels are
processed for the ball tracking, it does not lose track
of the ball because the diameter of the ball is larger
than the side margin of 4 pixels.

5. EXPERIMENTS AND RESULTS

5.1 Equipment for experiments

Fig. 9 is a photograph of the mobile robot used in
the actual experiment [14]. In the mobile robot, there
are six controllers to control two wheels and the
pan/tilt camera, to gather the gyro sensor data, and to
coordinate all these controllers by one high controller
that is a Pentium 3 PC board. There is also a frame
grabber card to obtain the information of the image,
which is interfaced through PCI bus to the PC. The
CAN-bus is used for the controllers, and there is an
interface card for the active camera to control
through ISA bus.

5.2 Results

We performed three experiments. In the first
experiment, the distance between the ball and camera
is 83cm and the ball moves by 17cm in an upward
shift along the corridor, which is shown in the
difference between Fig. 10 (a) and Fig. 10 (b). The
comparison of the optimal RB and the conventionai
BMA method is carried out. The result of the first
experiment shown in Fig. 10 (a) is the previous
image in n-1 frame and (b) is the present image in n
frame. (c) and (e) are the resultant images using the
optimal RB, which has 20x20 pixels after object
tracking. (d) and (f) are the resultant images using the
BMA method, which has 20x20 pixels after object
tracking. Intentionally, the block size of BMA is kept
identical to the sub-block size of the optimal RB.
However, within a block of BMA all pixels
(20x20x3=1200) are processed, while the optimal RB
(10x10x3=300) must be processed within a sub-block.
Thus, the computational load is reduced to a quarter.
In other words, although both methods are
satisfactory in the sense of tracking and recognition,
the optimal RB is superior to the BMA in relation to
operational speed. In the BMA, it elapsed about
29~31 msec, while in the optimal RB, about 18~20
msec lapse exists for object recognition.

The second experiment is executed for comparison
between the optimal RB and fixed RB. Fig. 11 shows
the result of the second experiment. The distance
between the camera and the ball is 186cm and the
radius of the ball equals 7 pixels. Here, in Fig. 11 (a),
the fixed size of the RB’s, which have 20x20 pixels
are used. In that case, the position of the ball can’t be
recognized since the RB fails to notice the ball
information, as shown Fig. 7 (a). Although
computational load is reduced as compared with the
BMA method, the moving object recognition ability
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(c) n-1. (e)n.
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(d) n-1. (H)n.
Fig. 10. Comparison between the optimal RB and
BMA.
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Fig. 11. Comparison between a Fixed and an optimal
RB.

is unsatisfactory. Fig. 11 (b) indicates the result with
the optimal RB that has 8x8 pixels according to the
ball size. This shows successful tracking through
three occupied RB’s. Not only is computational load
reduced but also moving object recognition is
improved. Hence, the optimal RB demonstrates very
high performance in tracking of the moving object.
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Fig. 12. Tracking data with BMA or RB.

Fig. 12 shows the encoder data of the mobile robot
in BMA or RB from the third experimentation results.
When the object moves from A (0,0) to D (50,700)
via B (0,180) and C (-60,400) with 1 (m/sec), the
mobile robot tracks the moving ball using the BMA
(In Fig. 12 (a)) or RB (Fig. 12 (b)). In Fig. 12 (a)
because the ball displacement is smaller than the
block size in BMA as mentioned in Section 2, there
exists several stop points (E, F, G, H, and I), where
the mobile robot halts the tracking for 2 seconds. At
the stop points, although the ball moves, the mobile
robot cannot recognize the movement with the BMA
method. However, in Fig 12 (b), the mobile robot
tracks the ball successfully with the RB method.

6. CONCLUSION

This paper proposed an optimal RB method for
real time object tracking, and dealt with the
comparison between RB method and BMA method
with the purpose of demonstrating superiority of the
RB method. In the case of BMA, image
preprocessing is required for the whole block to
recognize the correct image, which results in the
heavy processing load and the loss of the object being
tracked. Disappearance of the object also takes place
when the displacement of the object is less than the
block size in the image when BMA with MSD and
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MAD is applied for the moving object tracking
algorithm in real-time. When the fixed RB method is
utilized for the tracking, sometimes the algorithm
misses the moving object in the image frame,
although it reduces the computational time. However,
when the optimal RB is utilized for the tracking, the
effects of both high tracking performance and
decreased computational time are obtained
concurrently. For the decision of the RB size, the size
of the tracking object in the image frame is the major
factor. Therefore, this RB method with the size
optimization scheme can be widely used for the
applications that include the tracking of fast moving
objects in real-time situations.
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