Effects of Butylated Hydroxyanisole on Glutathione S-Transferases Activity and Cyclophosphamide-Induced Teratogenicity in Rats

랫드에서 Butylated Hydroxyanisole에 의한 Glutathione S-Transferases 유도 및 Cyclophosphamide로 유발된 기형에 대한 예방효과

  • 강현구 (충북대학교 수의과대학 및 동물의학연구소) ;
  • 이창희 (충북대학교 수의과대학 및 동물의학연구소) ;
  • 이기창 (충북대학교 수의과대학 및 동물의학연구소) ;
  • 이지은 (충북대학교 수의과대학 및 동물의학연구소) ;
  • 김하정 (충북대학교 수의과대학 및 동물의학연구소) ;
  • 최은경 (충북대학교 수의과대학 및 동물의학연구소) ;
  • 윤영원 (충북대학교 수의과대학 및 동물의학연구소) ;
  • 김윤배 (충북대학교 수의과대학 및 동물의학연구소)
  • Published : 2003.09.01

Abstract

Effects of repeated treatment with butylated hydroxyanisole (BHA) on the induction of glutathione S-transferases (GSTs) and teratogenicity of cyclophosphamide were investigated in rats. Pregnant rats were orally treated with BHA (50 mg/kg) for 7 days, from days 6 to 12 of gestation, and intraperitoneally challenged with cyclophosphamide (15 mg/kg) 2 hr after the final treatment. On day 20 of gestation, the maternal and fetal abnormalities were examined. Separately, a part of rats was sacrificed for the assay of hepatic and placental GSTs activities on day 12 of gestation following 7-day treatment with BHA. Cyclophosphamide, administered on day 12 of gestation, induced 43.2% of fetal death and resorption, and 100% of malformations in live fetuses, in contrast to low fetal resorption (8.7%) and malformations (8%) in control group. The malformations include cranial defect and exencephaly (100%), micrognathia and tongue extrusion (100%), limb defects (40%), renal pelvic dilatation (39%), and cleft palate (15%). Interestingly, BHA induced GSTs activities by 62% and 46% over the control in liver and placenta, respectively, and remarkably reduced the fetal resorption (13.9%) and malformations, resulting in 62% of cranial defect and exencephaly, 68% of micrognathia and tongue extrusion, 29% of limb defects, and 14% of renal pelvic dilatation. Taken together, it is suggested that a long-term pretreatment with BHA could substantially prevent fetuses from abortion and malformations following intrauterine exposure to teratogens including cyclophosphamide by inducing phase II antioxidant enzymes such as GSTs.

Keywords

References

  1. Cancer Treatm. Rep. v.60 Aspects of the teratology of cyclophosphamide (NSC-26271) Ashby,R.;Davis,L.;Dewhurst,B.B.;Espinal,R.;Penn,R.N.;Upshall,D.G.
  2. Toxicol. Appl. Pharmacol. v.126 Modulation of γ-glutamylcysteine synthetase large subunit mRNA expression by butylated hydroxyanisole Borroz,K.I.;Buetler,T.M.;Eaton,D.L. https://doi.org/10.1006/taap.1994.1101
  3. Cancer Res. v.42 Comparative effects of dietary administration of 2(3)-tert-butyl-4-hydroxyanisole and 3,5-di-tert-butyl-4-hydroxytoluene on several hepatic enzyme activities in mice and rats Cha,Y.N.;Henry,S.
  4. Toxicology v.179 Maternal protein-and-energy restriction reduces the developmental toxicity of cyclophosphamide and hydroxyuria in rats Chahoud,I.;Kuriyama,S.N.;Paumgartten,F.J.R. https://doi.org/10.1016/S0300-483X(02)00373-6
  5. Teratology v.50 Role of apoptosis in mediating phosphoramide mustard-induced rat embryo malformations in vitro Chen,B.;Cyr,D.G.;Hales,B.F. https://doi.org/10.1002/tera.1420500102
  6. Crit. Rev. Biochem. Mol. Biol. v.25 The role of glutathione and glutathione transferases in chemical carcinogenesis Coles,B.;Ketterer,B. https://doi.org/10.3109/10409239009090605
  7. Biochem. Pharmacol. v.28 Cycophosphamide cystitis-identification of acrolein as the causative agent Cox,P.J. https://doi.org/10.1016/0006-2952(79)90222-3
  8. Toxicol. Appl. Pharmacol. v.126 Increase in γ-glutamylcysteine synthetase activity as a mechanism for butylated hydroxyanisole-mediated elevation of hepatic glutathione Eaton,D.L.;Hamel,D.M. https://doi.org/10.1006/taap.1994.1100
  9. Diabetologia v.34 Protection by free oxygen radical scavenging enzymes against glucose-induced embryonic malformations in vitro Eriksson,U.J.;Borg,L.A. https://doi.org/10.1007/BF00405004
  10. Diabetes v.45 Pregnant diabetic rats fed the antitoxidant butylated hydroxytoluene show decreased occurrence of malformations in offspring Eriksson,U.J.;Siman,C.M. https://doi.org/10.2337/diabetes.45.11.1497
  11. Life Sci. v.25 Teratogenic bioactivation of cyclophosphamide in vitro Fantel,G.E.;Greenaway,J.C.;Juchau,M.R.;Shepard,T.H. https://doi.org/10.1016/0024-3205(79)90491-0
  12. Cancer Res. v.28 The teratogenicity of cyclophosphamide in mice Gibson,J.E.;Becker,B.A.
  13. Toxicol. Lett. v.138 Inhibition of cyclophophamide-induced teratogenesis by β-ionone Gomes-Carneiro,M.R.;De-Oliveira,A.C.A.X.;De-Carvalho,R.R.;Araujo,I.B.;Souza,C.A.M.;Kuriyama,S.N.;Paumgartten,F.J.R. https://doi.org/10.1016/S0378-4274(02)00413-7
  14. J. Biol. Chem. v.249 Glutathione S-transferase Habig,W.H.;Pabst,M.J.;Jakoby,W.B.
  15. Teratology v.23 Modification of the teratogenicity and mutagenicity of cyclophosphamide with thiol compounds Hales,B.F. https://doi.org/10.1002/tera.1420230312
  16. Teratology v.40 Effects of phosphoramide mustard and acrolein, cytotoxic metabolites of cyclophosphamide, on mouse limb development in vitro Hales,B.F. https://doi.org/10.1002/tera.1420400103
  17. Korean J. Toxicol. v.11 Effects of enzyme inducers and glutathione on the embryotoxicity of cyclophosphamide in cultured rat embryos Han,S.Y.;Shin,J.H.;kwon,S.C.;Kang,M.O.;Lee,Y.M.;Kim,P.G.;Yang,M.;Park,K.L.;Jang,S.J.
  18. Toxicology v.10 A study of the teratogenicity of butylated hydroxyanisole on rabbits Hansen,E.;Meyer,O. https://doi.org/10.1016/0300-483X(78)90069-0
  19. Principles and Methods of Toxicology The methods for assessing female reproductive and developmental toxicology Manson,J.M.;Kang,Y.J.;A.W.Hayes(Ed.)
  20. Cancer Res. v.44 Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450 Marinello,A.J.;Bansal,S.K.;Paul,B.;Koser,P.L.;Love,J.;Struck,R.F.;Gurtoo,H.L.
  21. Carcinogenesis v.13 Modulation of glutathione S-transferase and glutathione peroxidase by the anticarcinogen butylated hydroxyanisole in murine extrahepatic organs McLellan,L.I.;Harrison,D.;Hayes,J.D. https://doi.org/10.1093/carcin/13.12.2255
  22. Human Reprod. v.16 Administration of cyclophosphamide at different stages of follicular maturation in mice: effects on reproductive performance and fetal malformations Meirow,D.;Epstein,M.;Lewis,H.;Nugent,D.;Gosden,R.G. https://doi.org/10.1093/humrep/16.4.632
  23. Teratogen. Carcinogen. Mutagen. v.5 Cyclophosphamide teratogenesis: a review Mirkes,P.E. https://doi.org/10.1002/tcm.1770050202
  24. Toxicol. Appl. Pharmacol. v.58 Teratogenicity of cyclophosphamide metabolites: phosphoramide mustard, acrolein and 4-ketocyclophosphamide in rat embryos cultured in vitro Mirkes,P.E.;Fantel,A.G.;Greenaway,J.C.;Shepard,T.H. https://doi.org/10.1016/0041-008X(81)90436-1
  25. Methods in Prenatal Toxicology Organotropic effects and dose-response relationship in teratology Neubert,D.;Barrach,H.J.;D.Neubert(Ed.)
  26. Anticancer Drugs v.7 In vivolin vitro studies on the effects of cyclophosphamide on growth and differentiation of hamster palate Shah,R.M.;Izadnegahdar,M.F.;Henh,B.M.;Young,A.V. https://doi.org/10.1097/00001813-199602000-00010
  27. Biol. Neonate v.60 Glutathione and related enzyme activity in the 11-day rat embryo, placenta and perinatal rat liver Serafini,M.T.;Arola,L.;Romeu,A. https://doi.org/10.1159/000243414
  28. Comp. Biochem. Physiol. v.105C Comparative studies on the effect of butylated hydroxyanisole on glutathione and glutathione S-transferases in the tissues of male and female CD-1 mice Sharma,R.;Ahmad,H.;Singhal,S.S.;Saxena,M.;Srivastava,S.K.;Awasthi,Y.C.
  29. Adv. Cancer Res. v.22 Toxicity of antineoplastic agents in man: chromosome aberrations, antifertility effects, congenital malformations, and carcinogenic potential Sieber,S.M.;Adamson,R.H.
  30. Toxicol. Lett. v.87 Effect of butylated hydroxytoluene on alpha-tocopherol content in liver and adipose tissue of rats Siman,C.M.;Eriksson,U.J. https://doi.org/10.1016/0378-4274(96)03708-3
  31. Biochem. Pharmacol. v.36 Enhancement of embryotoxicity of acrolein, but not phosphoramide mustard, by glutathione depletion in rat embryos in vitro Slott,V.L.;Hales,B.F. https://doi.org/10.1016/0006-2952(87)90503-X
  32. Toxicol. Appl. Pharmacol. v.92 Role of the 4-hydroxy intermediate in the in vitro embryotoxicity of cyclophosphamide and dechlorocyclophosphamide Slott,V.L.;Hales,B.F. https://doi.org/10.1016/0041-008X(88)90377-8
  33. JNCL v.68 Glutathione S-transferase activity: enhancement by compounds inhibiting chemical carcinogenesis and by dietary constituents Spamins,V.L.;Venegas,P.;Wattenberg,L.W.
  34. Toxicol. Lett. v.82;83 Chemoprotection against cancer by phase 2 enzyme induction Talalay,P.;Fahey,J.W.;Holtzclaw,W.D.;Prestera,T.;Zhang,Y.
  35. Neoplasma v.40 Teratogenicity of cyclophosphamide in New Zealand white rabbits Ujhazy,E.;Balonova,T.;Durisova,M.;Gajdosik,A.;Jansak,J.;Molnarova,A.
  36. Encyclopedia of Toxicology v.1 Wexler,P.
  37. Anatom. Rep. v.251 Maternal antioxidant treatments prevent diabetes-induced alterations of mitochondrial morphology in rat embryos Yang,X.;Borg,L.A.K.;Siman,C.M.;Eriksson,U.J. https://doi.org/10.1002/(SICI)1097-0185(199807)251:3<303::AID-AR5>3.0.CO;2-W
  38. Teratogen. Carcinogen. Mutagen. v.13 Teratogenicity and carcinogenicity in a twin exposed in utero to cyclophosphamide Zemlickis,D.;Lishner,M.;Erlich,R.;Koren,G. https://doi.org/10.1002/tcm.1770130304
  39. Proc. Natl. Acad. Sci. USA v.91 Anticarcinogenic activities of sulforaphane and structurally related synthetic norbonyl isothicyanates Zhang,Y.;Kensler,T.W.;Cho,C.G.;Posner,G.H.;Talalay,P. https://doi.org/10.1073/pnas.91.8.3147
  40. Surgery Gynec. Obstet. v.145 Donor pretreatment in cadaver renal transplantation Zinke,H.;Woods,J.E.
  41. The Korean Society of Toxicology Newletter v.10 발생독성 예방에 있어서의 글루타치온의 역할 이은용