DOI QR코드

DOI QR Code

ALGEBRAIC KERNEL FUNCTIONS AND REPRESENTATION OF PLANAR DOMAINS

  • Published : 2003.05.06

Abstract

In this paper we study the non-degenerate n-connected canonical domains with n>1 related to the conjecture of S. Bell in [4]. They are connected to the algebraic property of the Bergman kernel and the Szego kernel. We characterize the non-degenerate doubly connected canonical domains.

Keywords

References

  1. S. Bell, The Bergman kernel function and proper holomorphic mappings, Trans. Amer. Math. Soc. 270 (1982), 685–691. https://doi.org/10.1090/S0002-9947-1982-0645338-1
  2. S. Bell, The Cauchy Transform, Potential Theory, and Conformal Mapping, CRC Press, Boca Raton, 1992.
  3. S. Bell, Complexity of the classical kernel functions of potential theory, Indiana Univ. Math. J. 44 (1995), 1337–1369. https://doi.org/10.1512/iumj.1995.44.2030
  4. S. Bell, Finitely generated function fields and complexity in potential theory in the plane, Duke Math. J. 98 (1999), 187-207. https://doi.org/10.1215/S0012-7094-99-09805-8
  5. S. Bell, A Riemann surface attached to domains in the plane and complexity in potential theory, Houston J. Math. 26 (2000), 277-297.
  6. S. Bergman, The kernel function and conformal mapping, Math Surveys 5, Amer. Math. Soc., Providence, 1950.
  7. S. Bochner and W. Martin, Several Complex Variables, Princeton Math. Ser. 10, Princeton Univ. Press, Princeton, 1948.
  8. H. M. Farkas and I. Kra, Riemann Surfaces, Grad. Texts in Math. 71, Springer-Verlag, 1980
  9. Y. Imayoshi and M. Taniguchi, An Introduction to Teichmüller Spaces, Springer-Verlag, Tokyo, 1992.
  10. M. Jeong, The Szegő kernel and rational proper mappings between planar domains, Complex Variables Theory Appl. 23 (1993), 157–162.
  11. M. Jeong and M. Taniguchi, Bell representation of finitely connected planar domains, Proc. Amer. Math. Soc., To appear.
  12. N. Kerzman and E. M. Stein, The Cauchy kernel, the Szegő kernel, and the Riemann mapping function, Math. Ann. 236 (1978), 85–93. https://doi.org/10.1007/BF01420257
  13. N. Kerzman and M. Trummer, Numerical conformal mapping via the Szegő ker-nel, Special issue on numerical conformal mapping, J. Comput. Appl. Math. 14 (1986), 111–123. https://doi.org/10.1016/0377-0427(86)90133-0
  14. O. Lehto, Univalent Functions and Teichmuller Spaces, Grad. Texts in Math. 109, Springer-Verlag, New York, 1987.
  15. S. M. Natanzon, Hurwitz spaces, Topics on Riemann surfaces and Fuchsian Groups, London Math. Soc. Lecture Note Ser. 287 (2001), 165-177.
  16. M. Trummer, An efficient implementation of a conformal mapping method based on the Szegő kernel, SIAM J. Numer. Anal. 23 (1986), 853–872. https://doi.org/10.1137/0723055

Cited by

  1. Equivalence problem for annuli and Bell representations in the plane vol.325, pp.2, 2007, https://doi.org/10.1016/j.jmaa.2006.02.001
  2. The coefficient body of Bell representations of finitely connected planar domains vol.295, pp.2, 2004, https://doi.org/10.1016/j.jmaa.2004.03.043