DOI QR코드

DOI QR Code

PERTURBATION OF DOMAINS AND AUTOMORPHISM GROUPS

  • Fridman, Buma L. (Department of Mathematics Wichita State University) ;
  • Ma, Daowei (Department of Mathematics Wichita State University)
  • Published : 2003.05.06

Abstract

The paper is devoted to the description of changes of the structure of the holomorphic automorphism group of a bounded domain in \mathbb{C}^n under small perturbation of this domain in the Hausdorff metric. We consider a number of examples when an arbitrary small perturbation can lead to a domain with a larger group, present theorems concerning upper semicontinuity property of some invariants of automorphism groups. We also prove that the dimension of an abelian subgroup of the automorphism group of a bounded domain in \mathbb{C}^n does not exceed n.

Keywords

References

  1. E. Bedford and J. Dadok, Bounded domains with prescribed group of automor-phisms, Comment. Math. Helv. 62 (1987), 561–572 https://doi.org/10.5169/seals-47361
  2. G. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972
  3. D. Ebin, The manifold of Riemannian metrics, Global analysis, Proceedings of Symposium in Pure Mathematics, XV, AMS (1970), 17–40.
  4. B. L. Fridman and E. A. Poletsky, Upper semicontinuity of automorphism groups, Math. Ann. 299 (1994), 615–628. https://doi.org/10.1007/BF01459802
  5. B. L. Fridman, D. Ma and E. A. Poletsky, Upper semicontinuity of the dimensions of automorphism groups in $C^n$, to appear in Amer. J. Math 125 (2003)
  6. B. L. Fridman, Biholomorphic invariants of a hyperbolic manifold and some applications, Trans. Amer. Math. Soc. 276 (1983), no. 2, 685–698. https://doi.org/10.1090/S0002-9947-1983-0688970-2
  7. B. L. Fridman, A universal exhausting domain, Proc. Amer. Math. Soc. 98 (1986), 267–270. https://doi.org/10.1090/S0002-9939-1986-0854031-0
  8. B. L. Fridman, K. T. Kim, S. G. Krantz and D. Ma, On fixed points and determin-ing sets for holomorphic automorphisms, Michigan Math. J. 50 (2002), 507–515. https://doi.org/10.1307/mmj/1039029980
  9. R. Greene and S. G. Krantz, The Automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), 425–446. https://doi.org/10.1007/BF01457445
  10. R. Greene and S. G. Krantz, Stability of the Caratheodory and Kobayashi metrics and applications to biholomorphic mappings, Proceedings of Symposia in Pure Math. Providence: AMS 41 (1984), 77–94.
  11. R. Greene and S. G. Krantz, Normal Families and the Semicontinuity of Isometry and Automorphism Groups, Math. Z. 190 (1985), 455–467. https://doi.org/10.1007/BF01214745
  12. K. Grove and H. Karcher, How to conjugate $C^1$-close group actions, Math. Z. 132 (1973), 11–20. https://doi.org/10.1007/BF01214029
  13. Sh. Kobayashi, Hyperbolic Complex Spaces, Springer-Verlag, 1998
  14. D. Ma, Upper semicontinuity of isotropy and automorphism groups, Math. Ann. 292 (1992), 533–545. https://doi.org/10.1007/BF01444634
  15. D. Montgomery, L. Zippin, Topological transformation groups, Interscience, New York, 1955
  16. R. Palais, Equivalence of nearby differentiable actions of a group, Bull. Amer. Math. Soc. 67 (1961), 362–364 https://doi.org/10.1090/S0002-9904-1961-10617-4
  17. E. Peschl and M. Lehtinen, A conformal self-map which fixes 3 points is the identity, Ann. Acad. Sci. Fenn., Ser. A I Math. 4 (1979), no. 1, 85–86.
  18. R. Saerens and W. R. Zame, The isometry groups of manifolds and the automor-phism groups of domains, Trans. Amer. Math. Soc. 301 (1987), 413–429 https://doi.org/10.1090/S0002-9947-1987-0879582-X
  19. A. E. Tumanov and G. B. Shabat, Realization of linear Lie groups by biholomor-phic automorphisms of bounded domains, Funct. Anal. Appl. (1990), 255–257. https://doi.org/10.1007/BF01077979

Cited by

  1. The automorphism groups of domains in complex space: a survey vol.36, pp.2, 2013, https://doi.org/10.2989/16073606.2013.779982
  2. Model domains in ℂ3with abelian automorphism group vol.59, pp.3, 2014, https://doi.org/10.1080/17476933.2012.734505