Effects of Radix Curcumae Aromaticae Extract in Rat Cardiac Endothelial Cells

울금 추출물이 배양 심장내피세포에 미치는 영향

  • Kwon Kang Beom (Department of Physiology, College of Oriental Medicine, Wonkwang University) ;
  • Kim In Seob (Department of Physiology, College of Oriental Medicine, Wonkwang University) ;
  • Kim Hyun Gyu (Department of Physiology, College of Oriental Medicine, Wonkwang University) ;
  • Choi Ki Bang (Department of Physiology, College of Oriental Medicine, Wonkwang University) ;
  • Kim Yong Bok (Department of Physiology, College of Oriental Medicine, Wonkwang University) ;
  • Ryu Do Gon (Department of Physiology, College of Oriental Medicine, Wonkwang University)
  • 권강범 (원광대학교 한의과대학 생리학교실) ;
  • 김인섭 (원광대학교 한의과대학 생리학교실) ;
  • 김현규 (원광대학교 한의과대학 생리학교실) ;
  • 최기방 (원광대학교 한의과대학 생리학교실) ;
  • 김용복 (원광대학교 한의과대학 생리학교실) ;
  • 류도곤 (원광대학교 한의과대학 생리학교실)
  • Published : 2003.02.01

Abstract

To test the protective effect of Radix Curcumae Aromaticae (RCA) on the damage of cardiac endothelial cells by xanthine oxidase (XO)/hypoxanthine (HX)-induced oxygen free radical, Neutral Red (NR), thiobarbituric acid reactive substances (TSARS), and DNA synthesis assay were used in the presence of RCA extract. The results of these experiments were obtained as follows ; Cardiac endothelial cells treated with XO/HX showed the cytotoxicity such as decreases in viability and DNA synthesis, a increase in lipid peroxidation. Cardiac endothelial cells pretreated with RCA extract protected the increase of lipid peroxidation by XO/HX. Cardiac endothelial cells pretreated with RCA extract inhibited the decrease of DNA synthesis by XO/HX. These results show that XO/HX elicits toxic effects in cultured cardiac endothelial cells derived from neonatal rat, and suggest that RCA extract is very effective in the prevention of XO/HX-induced toxicity.

Keywords

References

  1. 本草學 孝尙仁
  2. 和漢藥用植物 刈米達夫;木村雄四郎
  3. 本草綱目 v.14 李時珍
  4. Circulation v.72 Enhancement of recovery of myocardial function by oxygen free radical scavengers after reversible regional ischemia. Myers M. L.;Bolli R.;Lekich R. F.;Hartley C. J.;Roberts R. https://doi.org/10.1161/01.CIR.72.4.915
  5. Sci. v.201 The biology of oxygen radicals. Fridovich, I. https://doi.org/10.1126/science.210504
  6. Life Sci. v.34 Pharmacology of free radicals: Recent views on their action to inflammatory mechanism. Hertz F.;Cloarec A. https://doi.org/10.1016/0024-3205(84)90378-3
  7. Ann. Int. Med. v.93 Oxygen metabolism and the toxic properties of phagocytes. Klebanoff S.J. https://doi.org/10.7326/0003-4819-93-3-480
  8. Pharmacol. Rev. v.33 no.4 Free radicals in pharmacology and toxicology-Selected topocs. Mason R.P.;Chignell C.F.
  9. Ann. Int. Med. v.89 The biology and pathology of oxygen free radicals. McCord J.M.;Fridovich I. https://doi.org/10.7326/0003-4819-89-1-122
  10. Acta. Helv. v.34 Paper chromatography and phar-macologic action of the Pigments of Curcuma Pharm. Jentzsch K.;Höller H.
  11. J. Sci. Ind. Research (India). v.15C Curcuma longa ; in vitro anti-bacterial activitiy of curcumin and the essential oil. Ramprasad C.;Sirsi M.
  12. Arch Exptl. Path Pharmakol. v.181 The effect of some Curcuma derivatives on biliary secretion. Robbers H. https://doi.org/10.1007/BF01960454
  13. 濟衆新編 廉命吉
  14. 惠庵醫方 吳得泳
  15. 童修政和經史證類備用本草 唐愼微撰(宋)
  16. 中草藥學 上海中醫學院
  17. 常用方葯類編 上海中醫學院
  18. 古今醫統秘方大全 v.11 徐春甫 (明)
  19. 增補本草備要 汪昻
  20. 中藥硏究文獻摘要 劉壽山
  21. 古今醫方集成 吳克潛
  22. 國譯 萬病回春 龔廷賢;朱甲悳(譯)
  23. 新增醫門寶鑑 周命新
  24. 中國名醫驗方叢書 中藥的科學用法與驗方 陳存仁
  25. Chinese Medician Herbs Li Shin-chen
  26. J. Indian Inst. Sci. v.17A Essential oil from the rhizomes of Curcuma longa L. Kelkar N.C.;Sanjiva Rao B.
  27. Sci. Res. Pakistan v.4 no.4 Constituents of the rhizome of Curcuma longa L. Khalique A.;Amin M. N.
  28. J. Indian Chem. Soc. v.44 no.11 An improved method for the isolation of curcumin from turmeric(Curcuma long a) Janaki N.;Bose J.L.
  29. J. Biol. Chem. v.235 Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. Fridovich I.
  30. J. BioI. Chem. v.252 Liposome oxidation and erythrocyte lysis by enzymatically generated superoxide and hydrogen peroxide. Killogg E. W.;Fridovich I.
  31. Proc. Roy. Soc. v.147 The catalytic decomposition of hydrogen peroxide by anion salts. Harber F.;Weiss J.
  32. J. Biol. Chem. v.259 Iron-catalyzed hydroxyl radical formation : Stringent requirement for free iron coordination site Graf E.;Mahoney J. R.;Bryant R. G.;Eaton J. W.
  33. Am. J. Med. v.69 Oxygen toxicity. Frank L.;Massaro D. https://doi.org/10.1016/0002-9343(80)90509-4
  34. Acta Physiol. Scand. Suppl. v.492 Free radicals as mediators of tissue injury. Maestro R. F.;Thaw H. H.;Bjork J.;Planker M.;Arfors K. E.
  35. Biochem. Pharmacol. v.33 no.3 Free radical formation from anthracycline antitumor. agents and model sytem-1 : Model naphthoquinones and anthraquinones. Dodd N. J. F.;Mukherjee T.
  36. Biochem. Pharmacol. v.32 no.22 Free radical metabolism of VP-16 and inhibition anthracycline-induced lipid peroxidation. Sinha B. k;Trush M. A. Kalyanaraman B. https://doi.org/10.1016/0006-2952(83)90385-4
  37. Free Radical Biology & Medicine v.24 no.1 Both hydroxylamine and nitroxide protect cardiomyocytes from oxidative stress. Zhang R.;Pinson A.;Samuni A. https://doi.org/10.1016/S0891-5849(97)00165-2
  38. Toxicol. Appl. Pharmacol. v.75 In vitro cadmium-DNA interactions : Cooperativity of binding and competitive antagonism by calcium, magnesium and zinc. Waalkes M.P.;Pvirier L. A. https://doi.org/10.1016/0041-008X(84)90190-X