Induction of Apoptosis by Ginsenoside Rc on SK-MEL-28 Cell Lines

인체 흑색종세포에서 Ginsenoside Rc에 의한 Apoptosis의 유도

  • Choi Su La (Department of Pharmacy, Chungnam National University) ;
  • Myung Pyung Keun (Department of Pharmacy, Chungnam National University) ;
  • Jeong Seung Il (Division of natural Science & Technology, Wonkwang University) ;
  • Chun Hyun Ja (Division of natural Science & Technology, Wonkwang University) ;
  • Baek Seung Hwa (Department of Herbal Resources, Graduate School of Oriental Medicine and Wonkwang University)
  • 최수라 (충남대학교 약학대학) ;
  • 명평근 (충남대학교 약학대학) ;
  • 정승일 (원광대학교자연과학대학 기술학부) ;
  • 천현자 (원광대학교자연과학대학 기술학부) ;
  • 백승화 (원광대학교 한의학전문대학원 한약자원개발학과)
  • Published : 2003.02.01

Abstract

A wide variety of cancer chemotherapeutic agents have been shown to induce programmed cell death (PCD, apoptosis) in various tumor cell fines in vitro. This study was performed to know how ginsenoside Rc affect on SK-MEL-28 cell line, and how they induce the apoptosis. SK-MEL-28 cell lines were treated with various concentrations of ginsenoside Rc and cultured for various times. At cell cycle analysis, cells arrested at G2/M phase by ginsenoside Rc and apotosis percentage increased along with increasing concentration and time. TUNEL assay was performed to know whether SK-MEL-28 cell fine die as apoptosis or necrosis by ginsenoside Rc. As a result, fluorescence increased along with increasing time and concentration. Fas expressed on SK-MEL-28 cell lines membrane by ginsenoside Rc was identified using flow cytometer. Ginsenoside Rc induced apoptosis against SK-MEL-28 cell fines, and the apoptosis mechanism was identified as Fas-mediated apotosis.

Keywords

References

  1. 내과학 이문호
  2. Int. Rev. Cytol. v.68 Cell death: significance of apoptosis. Cell death: significance of apoptosis. Wyllie, A. H.;Kerr, F. R.;Currie, A. R. https://doi.org/10.1016/S0074-7696(08)62312-8
  3. FEBS Lett. v.307 Apoptosis. Biochemical events and relevance to cancer chemotherapy. Sen, S.;Incalci, M. D. https://doi.org/10.1016/0014-5793(92)80914-3
  4. J. Steroid Biochem. v.18 Glucocorticoid effects on thymidine incorporation into the DNA og S49 lymphoma cells. Bradshaw, H. D. J.;Vedeckis, W. V. https://doi.org/10.1016/0022-4731(83)90247-9
  5. J. Biol. Chem. v.243 Metabolic site and the course of cortisol action on glucose uptake, lactic acid output, and glucose 6-phosphate levels of rat thymus cells in vitro. Munck, A.
  6. Anal. Sci. Technol. v.11 no.5 Separation of 20(R&S) prosapogenin isomers of ginsenoside-Rg2 and Rg3 from ginseng saponins by reversed-phase high performance liquid chromatography. Jeong, S. I.;Kim, C. S.;Lee, Y. G.;Lee, H. S.;Kim, I.K.
  7. Biochem. Mol. Biol. Inter. v.40 no.4 Ginsenoside-Rh1 and Rh2 inhibit the induction of nitric oxide synthesis in murine peritoneal macrophages. Park, Y. C.;Lee, C. H.;Kang, H. S.;Kim, K. W.
  8. J. Nat. Prod. v.63 Isolation of the pharmacologically active saponin ginsenoside Rb1 from ginseng by immunoaffinity column chromatography. Fukuda, N.;Tanaka, H.;Shoyama, Y https://doi.org/10.1021/np990356s
  9. Planta Medica. v.63 Role of human intestinal prevotella oris in hydrolyzing ginseng saponins. Hasegawa, H.;Sung, J. H.;Benno, Y. https://doi.org/10.1055/s-2006-957729
  10. Planta medica. v.63 Modulation of protein kinase C activity in NIH3T3 cells by plant glycosides from panax ginseng. Byun, B. H.;Shin, I. C.;Yoon, Y. S.;Kim, S. I.;Joe. C. O. https://doi.org/10.1055/s-2006-957719
  11. Arch. pharm. Res. v.6 Isolation of ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf and Rg1 from ginseng root by high performance liquid chromatography. Paik, N.H.;Choi, M.G.;Cho, K.G.
  12. Life Sci. v.65 no.15 Effects of Ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity. Henderson, G. L.;Harkey, M. R.;Gershwin, M. E.;Hackman, R. M.; Stern, J. S.;Stresser, D. M. https://doi.org/10.1016/S0024-3205(99)00407-5
  13. J. Ethnopharmacol. v.16 no.(2-3) Effect of ginsenosides Rg1, Rc And Rb2 on hormone-induced lipoysis and lipogenesis in rat epididymal fat cells. Ng, T. B.;Wong, C. M.;Yeung, H. W.
  14. Exp. Cell Res. v.15 Nigrosin as a dye for differentiating live and dead ascites cells. Kaltenbach, J. P.;Kaltenbach, M. H.;Lyons, W. P. https://doi.org/10.1016/0014-4827(58)90067-3
  15. Cell death in biology and Pathology Munck, A.;Crabtree, G. R.
  16. Cancer Res. v.53 Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick tranlation assays. Gorczyca, W.;Gong, J.;Darzynkiewicz, Z.
  17. J. Cell Biol. v.119 Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. Gavrieli, Y.;Sherman, Y.;Ben-Sasson, S. A. https://doi.org/10.1083/jcb.119.3.493
  18. Exp. Neurol. v.133 End labeling (TUNEL) in Huntington's disease and other neuropathological conditions. Thomas, L. B.;Gates, D. J.;Richfield, E. K.;O' Brien, T. F.;Schweitzer, J. B.;Steindler, D. A. https://doi.org/10.1006/exnr.1995.1029
  19. Science v.245 Monoclonal antibody-mediated tumor regressin by induction of apoptosis. Trauth, B. C.;Klas, C.;Peters, A. M.;Matzku, S.;Moller, P.;Debatin, K. M.;Krammer, P. M. https://doi.org/10.1126/science.2787530
  20. J. Exp. Med. v.169 A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. Yonehara, S.;Ishii, A.;Yonehara, M. https://doi.org/10.1084/jem.169.5.1747