CD Gene Microarray Profiles of Bambusae Caulis in Liquamen in Human Mast Cell

  • Published : 2003.02.01

Abstract

Bambusae Caulis in Liquamen(BCL) has been used to relieve the cough and asthma, and remove the phlegm in traditional Oriental medicine. In recent years, it was studied for its antiinflammatory, antiallergenic, immune-modulating, and anticarcinogenic capabilities. This experiment was performed to evaluate the microarray profiles of CD genes in human mast cells before and after BCL treatment. The results are as follows: The expression of 51 of the genes studied was up-regulated in the Bel-treated group; they include the genes coding L apoferritin, beta-2-microglobulin, ferritin light polypeptide, CD63, monocyte chemotactic and activating fact, heme oxygenase 1, CD140a, integrin alpha M, colony stimulating factor 2 receptor, eukaryotic translation elongation factor, CD37, interleukin 18, NADH dehydrogenase 1 beta, CD48, 5-lipoxygenase activating protein, interleukin 4, ribosomal protein L5, GABA(A) receptor-associated protein, beta-tubulin, integrin beta 1, CD162, CD32, lymphotoxin beta, alpha-tublin, integrin alpha L, CD2, CD151, CD331, 90 kDa heat shock protein, CD59, CD3Z, microsomal glutathione S-transferase 2, CD33, CD162R, cyclophilinA, CD84, interleukin 9 receptor, interleukin 11, CD117, CD39-Like 2, and so forth. The expression of 7 of the genes studied was down-regulated in the BCL-treated group; they include the genes coding con, CD238, SCF, CD160, CD231, CD24, and CD130. Consequently, the treatment of BCL on the human mast cells increased the expression of 51 genes and decreased the expression of 7 genes. These data would provide a fundamental basis to the traditional applications of Bambusae Caulis in Liquamen.

Keywords

References

  1. Boncho-Hak Kang, B. S.;Ko, U. C.;Kim, K. Y.;Kim, S. H.;Kim, I. R.;Kim, H. C.;No, S. H.;Park, Y. K.;Seo, B. I.;Seo, Y. B.;Song, H. J.; Sin, M. K.;Ahn, D. K.;Lee, S. Y.;Lee, Y. J.;Lee, T. H.;Cho, S. Y.;Ju, Y. S.;Choi, H. Y.
  2. J. Kor. Acu. & Moxi. Soc. v.18 no.3 A literature study on Succus Phyllostachyos. Park, K. J.;Chae, W. S.
  3. J. Kor. Ori. Med. v.22 no.4 The effects of BCL(Bambusae Caulis in Liquamen) on fatigue induced by swimming exercise. Na, C. S.;Youn, D. H.;Choi, D. H.;Kim, J. S.;Jang, K. S.
  4. N. Engl. J. Med. v.328 New concepts about the mast cell. Galli, S. J. https://doi.org/10.1056/NEJM199301283280408
  5. Int. J. Tissue React. v.18 Mast cell: A neuroimmunoendocrine Theoharides, T. C.
  6. J. Clin. Immunol. v.8 Late-phase IgE-mediated reactions. Lemanske, R. F.;Kaliner, M. https://doi.org/10.1007/BF00915151
  7. Allergy: Principles and Practice Biology of Basophils Grant, J. A.;Li, H.;Middleton E;Reed CE;Ellis EF;Adkinson NF; Yunginger JW;Busse WW(eds)
  8. Proc. Natl. Acad. Sci. v.96 The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositolanchored molecule CD48. Malaviya, R.;Gao, Z.;Thankavel, K.;van der Merwe P. A.;Abraham, S. N. https://doi.org/10.1073/pnas.96.14.8110
  9. Nature. v.389 Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Baorto, D. M. https://doi.org/10.1038/39376
  10. Science. v.254 GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Stefanova, I.;Horejsi, V.;Ansotegui, I. J.;Knapp, W.;Stockinger, H. https://doi.org/10.1126/science.1719635
  11. J. Agric. Food. Chem. v.48 no.8 Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra var. Henonis leaf extract in vitro. Hu, C.;Zhang, Y.;Kitts, D. D. https://doi.org/10.1021/jf0001637
  12. Chem. Pharm. Bull. v.32 no.2 Inhibitors of cyclic adenosine 3' ,5'-monophosphate phosphodiesterase in Phyllostachys nigra Munro var. henonis Stapf. and Phragmites communis Trin., and inhibition by related compounds. Nikaido, T.;Sung, Y.;Ohmoto, T.;Sankawa, U. https://doi.org/10.1248/cpb.32.578
  13. J. Agric. Food. Chem. v.49 no.10 Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). Kweon, M. H.;Hwang, H. J.;Sung, H. C. https://doi.org/10.1021/jf010514x
  14. Allergy. v.57 no.8 Hemin, a heme oxygenase substrate analog, inhibits the cell surface expression of CD11b and CD66b on human neutrophils. Andersson, J. A.;Egesten, A.;Cardell, L. O. https://doi.org/10.1034/j.1398-9995.2002.23593.x
  15. Int. Immunopharmacol. v.1 Membrane complement regulatory proteins: insight from animal studies and relevance to human diseases. Miwa, T.;Song, W. C. https://doi.org/10.1016/S1567-5769(00)00043-6
  16. Curr. Drug Targets. v.1 New developments in anti-platelet therapies: potential use of CD39/vascular ATP diphosphohydrolase in thrombotic disorders. Qawi, I.;Robson, S. C. https://doi.org/10.2174/1389450003349173
  17. Bioessays. v.15 The making of a feather: homeoproteins, retinoids and adhesion molecules. Chuong, C. M. https://doi.org/10.1002/bies.950150804
  18. Microbes. Infect. v.2 The divergent role of tumor necrosis factor receptors in infectious diseases. Schluter, D.;Deckert, M. https://doi.org/10.1016/S1286-4579(00)01282-X
  19. Curro Opin. Immunol. v.12 The role of IL-18 in innate immunity. Akira, S. https://doi.org/10.1016/S0952-7915(99)00051-5
  20. J. Allergy. Clin. Immunol. v.106 no.6 Surface membrane antigen alteration on blood basophils in patients with Hymenoptera venom allergy under immunotherapy. Siegmund, R.;Vogelsang, H.;Machnik, A.;Herrmann, D. https://doi.org/10.1067/mai.2000.110928
  21. Am. J. Physiol. Lung. Cell. Mol. Physiol. v.280 no.6 SCF-induced airway hyperreactivity is dependent on leukotriene production. Oliveira, S. H.;Hogaboam, C. M.;Berlin, A.;Lukacs, N.W. https://doi.org/10.1152/ajplung.2001.280.6.L1242