Matrix effect of Ti and Zr-2.5Nb sample for hydrogen analysis by Inert Gas Fusion-Thermal Conductivity Detection(IGF-TCD) Method

불활성기체용해-열전도도검출법에 의한 수소분석시 티타늄 및 지르코늄-2.5니오븀 시료의 매질효과

  • Park, Soon-Dal (Department of Nuclear Chemistry Research, Korea Atomic energy Research Institute) ;
  • Choi, Ke-Chon (Department of Nuclear Chemistry Research, Korea Atomic energy Research Institute) ;
  • Kim, Jung-Suk (Department of Nuclear Chemistry Research, Korea Atomic energy Research Institute) ;
  • Kim, Jong-Gu (Department of Nuclear Chemistry Research, Korea Atomic energy Research Institute) ;
  • Joe, Kih-Soo (Department of Nuclear Chemistry Research, Korea Atomic energy Research Institute) ;
  • Kim, Won-Ho (Department of Nuclear Chemistry Research, Korea Atomic energy Research Institute)
  • 박순달 (한국원자력연구소 원자력화학연구부) ;
  • 최계천 (한국원자력연구소 원자력화학연구부) ;
  • 김정석 (한국원자력연구소 원자력화학연구부) ;
  • 조기수 (한국원자력연구소 원자력화학연구부) ;
  • 김종구 (한국원자력연구소 원자력화학연구부) ;
  • 김원호 (한국원자력연구소 원자력화학연구부)
  • Received : 2003.02.14
  • Accepted : 2003.03.28
  • Published : 2003.08.25

Abstract

To investigate the matrix effect of sample for hydrogen analysis by inert gas fusion-thermal conductivity detection, calibration factor for the hydrogen analyser of the inert gas fusion-thermal conductivity detection method was measured with hydrogen standard materials in Ti, Zr-2.5Nb and by hydrogen gas dosing method. Also the hydrogen extraction efficiency for the different sample matrix, Ti and Zr-2.5Nb, was evaluated without adding tin flux. The calibration factor of the hydrogen analyser which was calibrated by hydrogen standard material in Zr-2.5Nb and Ti was 2~3% and 14% higher than that by hydrogen gas dosing method, respectively. Based on the results of calibration factor measurement, it could be concluded that the hydrogen extraction efficiency of the Ti matrix sample will be 12% lower than that of the Zr-2.5Nb. And according to the experimental results of hydrogen recovery test by no tin flux, the hydrogen recovery percentage of the Ti and Zr-2.5Nb matrix sample was about 70% but the recovery rate of Ti matrix sample was slightly lower than that of Zr-2.5Nb.

불활성기체용해-열전도도검출법에 의한 수소분석시 매질효과를 조사하기 위해 티타늄 및 지르코늄-2.5니오븀 매질의 수소 표준물질 및 수소기체 주입에 의한 교정계수를 측정하였다. 또한 주석 조연제를 사용하지 않고 티타늄 및 지르코늄-2.5니오븀 매질 수소 표준물질의 수소 추출효율을 조사하였다. 수소기체 주입에 의한 수소분석기의 보정에 대해 지르코늄-2.5니오븀 매질 수소표준물질의 그것은 2~3% 높았으며, 티타늄 매질의 수소 표준물질은 약 14% 높은 값을 주었다. 교정계수 측정결과에 의하면 티타늄 매질 시료의 수소추출 효율이 지르코늄-2.5니오븀 매질 시료에 비해 약 12% 낮을 것으로 예상된다. 주석을 사용하지 않았을 때 티타늄 및 지르코늄-2.5니오븀매질 수소 표준물질의 수소 회수율은 약 70% 이었으며, 티타늄의 수소 회수율이 지르코늄-2.5니오븀 보다 낮았다.

Keywords

References

  1. L. M. Melnick, L. L. Lewis and B. D. Holt., 'Determination of Gaseous Elements in Metals,' Chemical analysis Vol., 40, 289, A Wiley-In terscience publication John Wiley & Sons, U. S. A., 1974.
  2. 和田行男, 秋山繁夫, 落合健一, 朝倉祥郞, 堤健一, 分析機器, 14, 463(1975).
  3. J. G. Van Raaphorst and A. Kout, Fresenius, Z. Anal. Chem., 291, 324(1978).
  4. K. Watanabe and M. Ouchi, Bunseki Kagaku, 34, 677(1985).
  5. G. A. Bickell and C. E. Coleman, Atomic Energy of Canada Limited(AECL)-Chalk River Laboratories, Personal communication.
  6. R. E. Taylor, Analytica. Chimica. Acta, 21, 549(1959).
  7. E. A. Gulbransen and K. F. Andrew, Electrochem. Tech., Sept-Oct, 471(1967).
  8. T. J. Shultz, H. M. Adams and L. W. Green, Anal. Chim. Acta., 316, 337(1995).
  9. Y. S. Sayi, P. R. Ramakumar, C. S. Yadav, P. S. Sankaran, G. C. Chappru, V. Venugopal, S. K. Aggarwal, H. C. Jain and D. D. Sood, Nuclear and Radiochemistry Symposium, Mumbai, India, 222-223, 21-24 Jan, 1997.
  10. G. A. Bickel, F. C. Sopchyshyn, G. A. McRae, Z. H. Walker and L. W. Green, Nucl. Instru. and Meth. in Phy. Res., B 140, 217(1998).
  11. H. H. Chen-Mayer, D. F. R. Mildner, and G. P. Lamaze, MIRS Spring meeting in San Francisco, U. S. A., 1-6, 13-17, Apr, 1998.
  12. A. L. Beach and W. G. Guldner, Anal. Chem., 31, 1722(1959).
  13. V. V. Kvardakov, J. of. Appl. Phy., 83, 3876(1998).
  14. ASTM, 'Standard Test Method for Determination of Hydrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Thermal Conductivity Method,' E 1447(2000).
  15. LECO(R) Corporation, 'Instruction manual for LECO(R) RH-404 Hydrogen Determinator,' USA (1989).
  16. D. Lawrenz, LECO, U. S. A., Personal communication.
  17. T. D. Mckinley, Trans. of the Metall. Soc. of AIME, Aug. 563, 1958.
  18. M. J. Tzeciak., Anal. Chem., 32, 72(1960).
  19. D. G. Swinburn, J. of. Iron & Steel Inst., Aug, 620(1971).
  20. S. D. Park, K. S. Choi, J. G. Kim, K. S. Joe and W. H. Kim, Anal. Sci. & Tech, 12, 490(1999).