깊이별 토양 휴믹산과 풀빅산의 특성 분석: 양성자교환용량, 원소성분비, 13C NMR 스펙트럼

Characterization of Humic and Fulvic Acids Extracted from Soils in Different Depth: Proton Exchange Capacity, Elemental Composition and 13C NMR Spectrum

  • 신현상 (서울산업대학교 환경공학과) ;
  • 이창훈 (서울산업대학교 환경공학과) ;
  • 이동석 (강원대학교 공과대학 환경.생물공학부) ;
  • 정근호 (한국원자력연구소 환경연구팀) ;
  • 이창우 (한국원자력연구소 환경연구팀)
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Lee, Chang-Hoon (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Rhee, Dong-Sock (Department of Environmental Engineering, Kangwon National University) ;
  • Chung, Kun-Ho (Environmental Research Team, Korea Atomic Energy Research Institute) ;
  • Lee, Chang-Woo (Environmental Research Team, Korea Atomic Energy Research Institute)
  • 투고 : 2002.03.12
  • 심사 : 2003.06.20
  • 발행 : 2003.08.25

초록

본 연구에서는 깊이별 토양시료에서 추출한 휴믹산과 풀빅산의 산성 작용기 및 구조 적 특성을 비교 분석하였다. 연구의 주요 목적은 토양 깊이별 방사성 핵종 농도 분포 및 이동성에 대한 휴믹물질의 역활 규명에 필요한 기초자료를 제공함에 있다. 휴믹산과 풀빅산 분자의 산성작용기 특성은 pH 적정법을 이용하여 분석하였고, 양성자교환용량 (PEC) 및 평균 $pK_a$ 값을 얻었다. 휴믹산과 풀빅산의 구조적 특성은 원소성분비 분석 및 CPMAS $^{13}C$ NMR 분광법을 이용하여 분석하였다. pH 적정 분석 결과, 휴믹산의 PEC 값은 $3.8{\sim}4.8meq\;g^{-1}$의 범위이었다. 풀빅산은 휴믹산에 비하여 상대적으로 높은 $5.5{\sim}7.0meq\;g^{-1}$의 PEC 값을 보였다. 깊이별 토양 휴믹산은 표층에서 보다 하층 (> 8 cm)에서 더 높은 PEC 값을 나타냈다. 원소성분비 (H/C) 및 $^{13}C$ NMR 스펙트럼 분석 ($C_{arom}/C_{aliph}$) 결과, 휴믹산이 풀빅산에 비하여 구조적으로 방향족성이 높고, 카르복실기 탄소 함량은 낮은 것으로 나타났다. 깊이별 비교의 경우, 휴믹산은 토양 깊이가 증가할수록 방향족성 및 카르복실 탄소 함량이 증가하는 경향을 보였으나, 풀빅산은 전체적으로 유사한 함량 분포를 보였다.

Humic and fulvic acids present in soils of different depth were extracted and their acidic functional groups and structural characteristics were analyzed and compared. The purpose of this study was to present a basic data needed to evaluate the effect of humic substances on depth distribution and migrational behaviour of radioactive elements deposited on soil. Acidic functional groups of the humic and fulvic acids were analyzed by pH titration method, and their proton exchange capacity (PEC, $mq\;g^{-1}$) and average $pK_a$ values were obtained. Structural characteristics of the humic and fulvic acids were analyzed using their CPMAS $^{13}C$ NMR spectra and elemental composition data. pH titration data showed that fulvic acids have higher acidic functional group contents ranging from 5.5 to $7.0meq\;g^{-1}$ compared with that of humic acids ($3.8{\sim}4.8meq\;g^{-1}$). From depth profiles, it has been found that PEC values of humic acids in deeper soil (> 8 cm) were higher than those at the surface soils. Elemental compositions (H/C ratio) and spectral features ($C_{arom}/C_{aliph}$ ratio) obtained from CPMAS $^{13}C$ NMR spectra showed that the aromatic character in humic acids was a relatively higher than that of fulvic acids, while lower in carboxyl carbon content. The aromatic character and carboxyl carbon contents of humic acids tend to increase as soil depth increased, but those of fulvic acid showed little differences by the soil depth range.

키워드

참고문헌

  1. J. I Kim, 'Chemical behaviour of transuranic elements in natural aquatic systems', In Handbook on the physics and chemistry of the actinides, A. J. Freeman and C. Keller. Eds., Elsevier Science Publishers B. V., 1986.
  2. J. Buffle, 'Complexation reactions in aquatic systems', Ellis Horwood Limited, New York, 1988.
  3. F. J. Stevenson, “Humus Chemistry, Genesis, Composition, Reactions”, pp 453-471, Wiley, New York, U.S.A., 1994
  4. I. H. Suffet and Patrick Mcknight, 'Aquatic Humic Substances - Influence on Fate and Treatment of Pollutants', pp. 83-116, American Chemical Society, Washington, DC. U.S.A., 1987
  5. G. R. Aiken, D. M. Mcknight, R. L. Wershaw and P. MacCarthy, 'Humic Substances in Soil, Sedment and Water', pp 15-20, Wiley and Sons, New York, U.S.A., 1985
  6. M. H. Lee and C. W. Lee, J. Radioanal. Nucl. Chem., 239(3), 471-476 (1999)
  7. Y. Fujikawa and M Fukui, Water, Air, Soil Pollution, 131, 305-328 (2001)
  8. H. S. Shin, D. S. Rhee, K. H. Chung and C. W. Lee, Anal. Sci. Technol., 15(4), 373-380 (2002)
  9. H. S. Shin, H. Moon, H. B. Yang and S. S. Yun, Bull. Korean Chem. Soc., 15(9), 777-781 (1994)
  10. J. I. Kim and G. Buckau, 'Characterization of reference and site specific humic acids', TU Muenchen Report RCM 01588, 1988
  11. R. L. Wershaw and M. A. Mikita, 'NMR of Humic Substances and Coal', Lewis Publisher, Michigan, 1987.
  12. F. J. Stevenson, 'Humus chemistry: Genesis, composition, reactions', pp. 264-284, John Wiley & Sons, New York, 1982
  13. E. M. Perdue and C, R. Lytle, Environ. Sci. Technol., 17, 654-660 (1983)
  14. R. A. Torres and G. R. Choppin, Radiochim. Acta, 35, 143-148 (1984)
  15. O. K. Borggaard, Anal. Chim. Scand. A., 28, 121-122 (1974)
  16. J. A. Marinsky, Coord. Chem. Rev., 19, 125-171 (1976)
  17. H. S. Shin, J. M. Monsallier and G. R. Choppin, Talanta 50, 641-647 (1999)
  18. H. S. Shin and H. Moon, Soil Sci., 161(4), 250-256 (1996)
  19. C. M. Preston and M. Schnitzer, Soil Sci. Soc. Am. J., 48, 305-318 (1984)
  20. S. A. Sojika, R. A. Wolf, E. A. Dietz and B. F. Dannels, Macromolecules, 12, 767-779 (1979)
  21. K. Biemann, 'Table of Spectral data for Structural Determination of Organic Compounds', pp. c120, W. Fresenius, J. F. K. Huber, E. Pungor, G. A. Rechnitz, W. Simon and T. S West, Eds., Springer-Verlag, Berlin Heidelburg, Germany, 1989