Kinesin Superfamily KIF5 Proteins Bind to ${\beta}III$ Spectrin

  • Paik, Jae-Eun (Departments of Biochemistry and Molecular Cell Physiology Research Group, College of Medicine, Inje University) ;
  • Kim, Na-Ri (Departments of Physiology and Biophysics and Molecular Cell Physiology Research Group, College of Medicine, Inje University) ;
  • Yea, Sung-Su (Departments of Biochemistry, College of Medicine, Inje University) ;
  • Jang, Won-Hee (Departments of Biochemistry, College of Medicine, Inje University) ;
  • Chung, Joon-Young (Departments of Parasitology and Molecular Cell Physiology Research Group, College of Medicine, Inje University) ;
  • Lee, Sang-Kyoung (Departments of Psychiatry and Molecular Cell Physiology Research Group, College of Medicine, Inje University) ;
  • Park, Yeong-Hong (Departments of Biochemistry, College of Medicine, Inje University) ;
  • Han, Jin (Departments of Physiology and Biophysics and Molecular Cell Physiology Research Group, College of Medicine, Inje University) ;
  • Seog, Dae-Hyun (Departments of Biochemistry and Molecular Cell Physiology Research Group, College of Medicine, Inje University)
  • Published : 2004.06.21

Abstract

The kinesin proteins (KIFs) make up a large superfamily of molecular motors that transport cargo such as vesicles, protein complexes, and organelles. KIF5 is a heterotetrameric motor that conveys vesicles and plays an important role in neuronal function. Here, we used the yeast two-hybrid system to identify the neuronal protein(s) that interacts with the tail region of KIF5 and found a specific interaction with ${\beta}III$ spectrin. The amino acid residues between 1394 and 1774 of ${\beta}III$ spectrin were required for the interaction with KIF5C. ${\beta}III$ spectrin also bound to the tail region of neuronal KIF5A and ubiquitous KIF5B but not to other kinesin family members in the yeast two-hybrid assay. In addition, these proteins showed specific interactions, confirmed by GST pull-down assay and co-immunoprecipitation. ${\beta}III$ spectrin interacted with GST-KIF5 fusion proteins, but not with GST alone. An antibody to ${\beta}III$ spectrin specifically co-immunoprecipitated KIF5s associated with ${\beta}III$ spectrin from mouse brain extracts. These results suggest that KTF5 motor proteins transport vesicles or organelles that are coated with ${\beta}III$ spectrin.

Keywords

References

  1. Aizawa H, Sekine Y, Takemura R, Zhang Z, Nangaku M, Hirokawa N. Kinesin family in murine central nervous system. J Cell Biol 119: 1287-1296, 1992 https://doi.org/10.1083/jcb.119.5.1287
  2. Beck KA, Buchanan JA, Malhotra V, Nelson WJ. Golgi spectrin: identification of an erythroid beta-spectrin homolog associated with the Golgi complex. J Cell Biol 127: 707-723, 1994 https://doi.org/10.1083/jcb.127.3.707
  3. Beck KA, Buchanan JA, Nelson WJ. Golgi membrane skeleton: identification, localization and oligomerization of a 195-kDa ankyrin isoform associated with the Golgi complex. J Cell Sci 110: 1239-1249, 1997
  4. Beck KA, Nelson WJ. A spectrin membrane skeleton of the Golgi complex. Biochim Biophys Acta 1404: 153-160, 1998 https://doi.org/10.1016/S0167-4889(98)00054-8
  5. De Matteis MA, Morrow JS. The role of ankyrin and spectrin in membrane transport and domain formation. Curr Opin Cell Biol 10: 542-549, 1998 https://doi.org/10.1016/S0955-0674(98)80071-9
  6. De Matteis MA, Morrow JS. Spectrin tethers and mesh in the biosynthetic pathway. J Cell Sci 113: 2331-2343, 2000
  7. Devarajan P, Stabach PR, De Matteis MA, Morrow JS. Na, K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin- Darby canine kidney cells. Proc Natl Acad Sci U S A. 94: 10711- 10716, 1997 https://doi.org/10.1073/pnas.94.20.10711
  8. Devarajan P, Stabach PR, Mann AS, Ardito T, Kashgarian M, Morrow JS. Identification of a small cytoplasmic ankyrin (AnkG119) in the kidney and muscle that binds beta I sigma spectrin and associates with the Golgi apparatus. J Cell Biol 133: 819-830, 1996 https://doi.org/10.1083/jcb.133.4.819
  9. Fath KR, Trimbur GM, Burgess DR. Molecular motors and a spectrin matrix associate with Golgi membranes in vitro. J Cell Biol 139: 1169-1181, 1997 https://doi.org/10.1083/jcb.139.5.1169
  10. Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279: 519-526, 1998 https://doi.org/10.1126/science.279.5350.519
  11. Holleran EA, Tokito MK, Karki S, Holzbaur EL. Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J Cell Biol 135: 1815-1829, 1996 https://doi.org/10.1083/jcb.135.6.1815
  12. Hoock TC, Peters LL, Lux SE. Isoforms of ankyrin-3 that lack the NH2-terminal repeats associate with mouse macrophage lysosomes. J Cell Biol 136: 1059-1570, 1997 https://doi.org/10.1083/jcb.136.5.1059
  13. Kamal A, Goldstein LS. Connecting vesicle transport to the cytoskeleton. Curr Opin Cell Biol 12: 503-508, 2000 https://doi.org/10.1016/S0955-0674(00)00123-X
  14. Kanai Y, Okada Y, Tanaka Y, Harada A, Terada S, Hirokawa N. KIF5C, A novel neuronal kinesin enriched in motor neurons. J Neurosci 20: 6374-6384, 2000
  15. Karcher RL, Deacon SW, Gelfand VI. Motor-cargo interactions: the key to transport specificity. Trends Cell Biol 12: 21-27, 2002 https://doi.org/10.1016/S0962-8924(01)02184-5
  16. Kondo S, Sato-Yoshitake R, Noda Y, Aizawa H, Nakata T, Matsuura Y, Hirokawa N. KIF3A is a new microtubule-based anterograde motor in the nerve axon. J Cell Biol 125: 1095-1107, 1994 https://doi.org/10.1083/jcb.125.5.1095
  17. Lippincott-Schwartz J. Cytoskeletal proteins and Golgi dynamics. Curr Opin Cell Biol 10: 52-59, 1998 https://doi.org/10.1016/S0955-0674(98)80086-0
  18. Malchiodi-Albedi F, Ceccarini M, Winkelmann JC, Morrow JS, Petrucci TC. The 270-kDa splice variant of erythrocyte betaspectrin (beta I sigma 2) segregates in vivo and in vitro to specific domains of cerebellar neurons. J Cell Sci 106: 67-78, 1993
  19. Meng YX, Wilson GW, Avery MC, Varden CH, Balczon R. Suppression of the expression of a pancreatic beta-cell form of the kinesin heavy chain by antisense oligonucleotides inhibits insulin secretion from primary cultures of mouse beta-cells. Endocrinology 138: 1979-1987, 1997 https://doi.org/10.1210/en.138.5.1979
  20. Miki H, Setou M, Kaneshiro K Hirokawa N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA. 98: 7004-7011, 2001 https://doi.org/10.1073/pnas.111145398
  21. Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, Hirokawa N. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79: 1209-1220, 1994 https://doi.org/10.1016/0092-8674(94)90012-4
  22. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95: 829-837, 1998 https://doi.org/10.1016/S0092-8674(00)81705-5
  23. Okada Y, Yamazaki H, Sekine-Aizawa Y, Hirokawa N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81: 769-780, 1995 https://doi.org/10.1016/0092-8674(95)90538-3
  24. Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJ, Lippincott-Schwartz J. ER-to-Golgi transport visualized in living cells. Nature 389: 81-85, 1997 https://doi.org/10.1038/38001
  25. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Habor Laboratory, Cold Spring Habor, New York, 1989
  26. Scholey JM, Heuser J, Yang JT Goldstein LS. Identification of globular mechanochemical heads of kinesin. Nature 338: 355- 357, 1989 https://doi.org/10.1038/338355a0
  27. Seiler S, Kirchner J, Horn C, Kallipolitou A, Woehlke G, Schliwa M. Cargo binding and regulatory sites in the tail of fungal conventional kinesin. Nat Cell Biol 2: 333-338, 2000 https://doi.org/10.1038/35014022
  28. Seog DH, Lee DH, Lee SK. Molecular Motor Proteins of the Kinesin superfamily proteins (KIFs): Structure, Cargo and Disease. J Korean Medical Science 19: 1-7, 2004 https://doi.org/10.3346/jkms.2004.19.1.1
  29. Setou M, Nakagawa T, Seog DH, Hirokawa N. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288: 1796-1802, 2000 https://doi.org/10.1126/science.288.5472.1802
  30. Setou M, Seog DH, Y. Tanaka Y, Kanai Y, Takei Y, Kawagishi M, Hirokawa N. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417: 83-87, 2002 https://doi.org/10.1038/nature743
  31. Stankewich MC, Tse WT, Peters LL, Ch'ng Y, John KM, Stabach PR, Devarajan P, Morrow JS, Lux SE. A widely expressed betaIII spectrin associated with Golgi and cytoplasmic vesicles. Proc Natl Acad Sci USA 95: 14158-14163, 1998. https://doi.org/10.1073/pnas.95.24.14158
  32. Takeda S, Yamazaki H, Seog DH, Kanai Y, Terada S, Hirokawa N. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J Cell Biol 148: 1255-1265, 2000 https://doi.org/10.1083/jcb.148.6.1255
  33. Tse WT, Tang J, Jin O, Korsgren C, John KM, Kung AL, Gwynn B, Peters LL, Lux SE. A new spectrin, beta IV, has a major truncated isoform that associates with promyelocytic leukemia protein nuclear bodies and the nuclear matrix. J Biol Chem 276: 23974-23985, 2001 https://doi.org/10.1074/jbc.M009307200
  34. Vale RD, Fletterick RJ. The design plan of kinesin motors. Annu Rev Cell Dev Biol 13: 745-777, 1997 https://doi.org/10.1146/annurev.cellbio.13.1.745
  35. Vale RD. The molecular motor toolbox for intracellular transport. Cell 112: 467-480, 2003 https://doi.org/10.1016/S0092-8674(03)00111-9
  36. Winkelmann JC, Forget BG. Erythroid and nonerythroid spectrins Blood 81: 3173-3185, 1993
  37. Yang JT, Laymon RA, Goldstein LS. A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses. Cell 56: 879-889, 1989 https://doi.org/10.1016/0092-8674(89)90692-2