Mechanism of Leptin-Induced Potentiation of Catecholamine Secretion Evoked by Cholinergic Stimulation in the Rat Adrenal Medulla

  • Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Choi, Deok-Ho (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Kang, Moo-Jin (Department of Pharmacology, College of Medicine, Chosun University)
  • Published : 2004.08.21

Abstract

The aim of the present study was to examine the effect of leptin on CA release from the isolated perfused model of the rat adrenal gland, and to establish its mechanism of action. Leptin $(1{\sim}100\;ng/ml)$, when perfused into an adrenal vein of the rat adrenal gland for 60 min, enhanced a dose-dependently the secretory responses of CA evoked by ACh $(5.32{\times}10^{-3}\;M)$, DMPP $(10^{-4}\;M)$ and McN-A-343 $(10^{-4}\;M)$, although it alone has weak effect on CA secretion. However, it did not affect the CA secretion evoked by excess $K^+\;(5.6{\times}10^{-2}\;M)$. Leptin alone produced a weak secretory response of the CA. Moreover, leptin (10 ng/ml) in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644, an activator of the dihydropyridine L-type $Ca^{2+}$ channels, and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}$ ATPase. However, in the presence of U0126 $(1\;{\mu}M)$, an inhibitor of mitogen-activated protein kinase (MAPK), leptin no longer enhanced the CA secretion evoked by ACh and DMPP. Furthermore, in the presence of anti-leptin (10 ng/ml), an antagonist of Ob receptor, leptin (10 ng/ml) also no longer potentiated the CA secretory responses evoked by DMPP and Bay-K-8644. Collectively, these experimental results suggest that leptin enhances the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors), but does not that by membrane depolarization. It seems that this enhanced effect of leptin may be mediated by activation of U0126-sensitive MAPK through the leptin receptors, which is probably relevant to the activation of the dihydropyridine L-type $Ca^{2+}$ channels located on the rat adrenomedullary chromaffin cells.

Keywords

References

  1. Akaike A, Mine Y, Sasa M, Takaori S. Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells. J Pharmacol Expt Ther 255: 333-339, 1990
  2. Anton AH, Sayre DF. A study of the factors affecting the aluminum oxide trihydroxy indole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360-375, 1962
  3. Barash IA, Cheung CC, Weigle DS, Ren H, Kabigting EB, Kuijper JL, Clifton DK, Steiner RA. Leptin is a metabolic signal to the reproductive system. Endocrinology 137: 3144-3147, 1996 https://doi.org/10.1210/en.137.7.3144
  4. Bornstein SR, Uhlmann K, Haidan A, Ehrhart-Bornstein M, Scherbaum WA. Evidence for a novel peripheral action of leptin as a metabolic signal to the adrenal gland: leptin inhibits cortisol release directly. Diabetes 46: 1235-1238, 1997 https://doi.org/10.2337/diabetes.46.7.1235
  5. Burgoyne RD. Mechanism of secretion from adrenal chromaffin cells. Biochem Biophys Acta 779: 201-216, 1984 https://doi.org/10.1016/0304-4157(84)90009-1
  6. Cao GY, Considine RV, Lynn RB. Leptin receptors in the adrenal medulla of the rat. Am J Physiol 273: E448-E452, 1997
  7. Cena V, Nicholas G, Sanchez-Garcia P, Kjrpekar SM, Garcia AG. Pharmacological dissection of receptor-associated and voltagesensitive ionic channeIs involved in catecholamine release. Neuroscience 10: 1455-1462, 1983 https://doi.org/10.1016/0306-4522(83)90126-4
  8. Challis RAJ, Jones JA, Owen PJ, Boarder MR. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J Neurochem 56: 1083-1086, 1991 https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
  9. Cheek TR, Burgoyne RD. Cyclic AMP inhibits both nicotine-induced actin disassembly and catecholamine secretion from bovine adrenal chromaffin cells. J Biol Chem 262(24): 11663-11666, 1987
  10. Cheek TR, O'Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD. Spatial localization of the stimulus-induced rise in cytosolic Ca2+ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett 247: 429-434, 1989 https://doi.org/10.1016/0014-5793(89)81385-7
  11. Emilsson V, Liu YL, Cawthorne MA, Morton NM, Davenport M. Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Diabetes 46: 313-316, 1997 https://doi.org/10.2337/diabetes.46.2.313
  12. Evans BA, Agar L, Summers RJ. The role of the sympathetic nervous system in the regulation of leptin synthesis in C57BL/6 mice. FEBS Lett 444: 149-154, 1999 https://doi.org/10.1016/S0014-5793(99)00049-6
  13. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 395: 763-770, 1998 https://doi.org/10.1038/27376
  14. Gafni J, Munsch JA, Lam TH, Catlin MC, Costa LG, Molinski TF, Pessah IN. Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron 19: 723- 733, 1997 https://doi.org/10.1016/S0896-6273(00)80384-0
  15. Gainsford T, Willson TA, Metcalf D, Handman E, Mcfarlane C, Ng A, Nicola NA, Alexander WS, Hilton DJ. Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc Natl Acad Sci USA 93: 14564-14568, 1996 https://doi.org/10.1073/pnas.93.25.14564
  16. Gandia L, Borges R, Albillos A, Garcia AG. Multiple calcium channel subtypes in isolated rat chromaffin cells. Pflgers Arch 430: 55-63, 1995 https://doi.org/10.1007/BF00373839
  17. Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L. Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309: 69-71, 1984 https://doi.org/10.1038/309069a0
  18. Glasow A, Haidan A, Hilbers U, Breidert M, Gillespie J, Scherbaum WA, Chrousos GP, Bornstein SR. Expression of Ob receptor in normal human adrenals: Differential regulation of adrenocortical and adrenomedullary function by leptin. J Clin Endocrinol Metab 83: 4459-4466, 1998 https://doi.org/10.1210/jc.83.12.4459
  19. Goeger DE, Riley RT. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on Ca2+ binding and Ca2+ permeability. Biochem Pharmacol 38: 3995- 4003, 1989 https://doi.org/10.1016/0006-2952(89)90679-5
  20. Halloran SM, Vulliet PR. Microtubule-associated protein kinase-2 phosphorylates and activates tyrosine hydroxylase following depolarization of bovine adrenal chromaffin cells. J Biol Chem 269: 30960-30965, 1994
  21. Hammer R, Giachetti A. Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci 31: 2992- 2998, 1982
  22. Harish OE, Kao LS, Raffaniello R, Wakade AR, Shneider AS. Calcium dependence of muscarinic receptor-mediated catecholamine secretion from the perfused adrenal medulla. J Neurochem 48: 1730-1735, 1987 https://doi.org/10.1111/j.1471-4159.1987.tb05730.x
  23. Haycock JW, Ahn NG, Cobb MH, Krebs EG. ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc Natl Acad Sci USA 89: 2365-2369, 1992 https://doi.org/10.1073/pnas.89.6.2365
  24. Hoggard N, Mercer JG, Rayner DV, Moar K, Trayhurn P, Williams LM. Localization of leptin receptor mRNA splice variants in murine peripheral tissues by RT-PCR and in situ hybridization. Biochem Biophys Res Commun 232: 383-387, 1997 https://doi.org/10.1006/bbrc.1997.6245
  25. Ilno M. Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gene Physiol 94: 363-383, 1989 https://doi.org/10.1085/jgp.94.2.363
  26. Inoue M, Kuriyama H. Muscarinic receptor is coupled with a cation channel through a GTP-binding protein in guinea-pig chromaffin cells. J Physiol (Lond) 436: 511-529, 1991
  27. Kim KT, Westhead EW. Cellular responses to Ca2$^+$ from extracellular and intracellular sources are different as shown by simultaneous measurements of cytosolic Ca2$^+$ and secretion from bovine chromaffin cells. Proc Natl Acad Sci USA 86: 9881-9885, 1989a https://doi.org/10.1073/pnas.86.24.9881
  28. Kimura T, Shimamura T, Satoh S. Effects of pirenzepine and hexamethonium on adrenal catecholamine release in responses to endogenous and exogenous acetylcholine in anesthetized dogs. J Cardiovasc Pharmacol 20: 870-874, 1992 https://doi.org/10.1097/00005344-199212000-00004
  29. Kosaki A, Yamada K, Kuzuya H. Reduced expression of the leptin gene (ob) by catecholamine through a Gs protein-coupled pathway in 3T3-L1 adipocytes. Diabetes 45: 1744-1749, 1996 https://doi.org/10.2337/diabetes.45.12.1744
  30. Ladona MG, Aunis D, Gandia AG, Garcia AG. Dihydropyridine modulation of the chromaffin cell secretory response. J Neurochemstry 48: 483-490, 1987 https://doi.org/10.1111/j.1471-4159.1987.tb04118.x
  31. Leclercq-Meyer V, Considine RV, Sener A, Malaisse WJ. Do leptin receptors play a functional role in the endocrine pancreas? Biochem Biophys Res Commun 229: 794-798, 1996 https://doi.org/10.1006/bbrc.1996.1882
  32. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM. Abnormal Splicing of the leptin receptor in diabetic mice. Nature 379: 632-635, 1996 https://doi.org/10.1038/379632a0
  33. Lim DY, Hwang DH. Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J Pharmacol 27(1): 53-67, 1991
  34. Lim DY, Kim CD, Ahn KW. Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch Pharm Res 15(2): 115-125, 1992 https://doi.org/10.1007/BF02974085
  35. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394: 897-901, 1998 https://doi.org/10.1038/29795
  36. Mattson MP, Zhu H, Yu J, Kindy MS. Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J Neurosci 20: 1358-1364, 2000
  37. Misbahuddin M, Oka M. Muscarinic stimulation of guinea pig adrenal chromaffin cells stimulates catecholamine secretion without significant increase in Ca2+ uptake. Neurosci Lett 87: 266-270, 1988 https://doi.org/10.1016/0304-3940(88)90459-4
  38. Nakazato Y, Oleshanskly M, Tomita U, Yamada Y. Voltageindependent catecholamine release mediated by the activation of muscarinic receptors in guinea-pig adrenal glands. Br J Pharmacol 93: 101-109, 1988 https://doi.org/10.1111/j.1476-5381.1988.tb11410.x
  39. Oka M, Isosaki M, Yanagihara N. Isolated bovine adrenal medullary cells: studies on regulation of catecholamine synthesis and release. In: Catecholamines: Basic and Clinical frontiers (Eds. Usdin E, Kopin IJ, Brachas J) Pergamon Press, Oxford, p 70- 72, 1979
  40. Pallett AL, Morton NM, Cawthorne MA, Emilsson V. Leptin inhibits insulin secretion and reduces insulin mRNA levels in rat isolated pancreatic islets. Biochem Biophys Res Commun 238(1): 267-270, 1997 https://doi.org/10.1006/bbrc.1997.7274
  41. Pozzan T, Gatti G, Dozio N, Vicemini LM, Meldolesi J. Ca2$^+$ -dependent and -lndependent release of neurotransmitters from PCI2 cells: A role for protein kinase C activation. J Cell Biol 99: 628-638, 1984 https://doi.org/10.1083/jcb.99.2.628
  42. Pralong FP, Roduit R, Waeber G, Castillo E, Mosimann F, Thorens B, Gaillard RC. Leptin inhibits directly glucocorticoid secretion by normal human and rat adrenal gland. Endocrinology 139: 4264-4268, 1998 https://doi.org/10.1210/en.139.10.4264
  43. Ritchi AK. Catecholamine secretion in a rat pheochromocytoma cell line: Two pathways for calcium entry. J Physiol 286: 541-561, 1979
  44. Rosenblum CI, Tota M, Cully D, Smith T, Collum R, Qureshi S, Hess JF, Phillips MS, Hey PJ, Vongs A, Fong TM, Xu L, Chen HY, Smith RG, Schindler C, Van der Ploeg LHT. Functional STAT 1 and 3 signaling by the leptin receptor (OB-R); reduced expression of the rat fatty leptin receptor in transfected cells. Endocrinology 137: 5178-5181, 1996 https://doi.org/10.1210/en.137.11.5178
  45. Satoh N, Ogawa Y, Katsuura G, Numata Y, Tsuji T, Hayase M, Ebihara K, Masuzaki H, Hosoda K, Yoshimasa Y, Nakao K. Sympathetic activation of leptin via the ventromedial hypothalamus: Leptin-induced increase in catecholamine secretion. Diabetes 48: 1787-1793, 1999 https://doi.org/10.2337/diabetes.48.9.1787
  46. Schramm M, Thomas G, Towart R, Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of Ca2$^+$ channels. Nature 303: 535-537, 1982 https://doi.org/10.1038/303535a0
  47. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG. Identification of targets of leptin action in rat hypothalamus. J Clin Invest 98: 1101-1106, 1996 https://doi.org/10.1172/JCI118891
  48. Seidler NW, Jona I, Vegh N, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the Ca2$^+$-ATPase of sarcoplasimc reticulum. J Biol Chem 264: 17816-17823, 1989
  49. Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca2$^+$-pump, reduces Ca2$^+$-dependent K$^+$ currents in guinea-pig smooth muscle cells. Br J Pharmacol 107: 134-140, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  50. Tallarida RJ, Murray RB. Manual of pharmacologic calculation with computer programs. 2nd Ed. New York, Speringer-Verlag, p 132, 1987
  51. Takahashi Y, Okimura Y, Mizuno I, Iida K, Takahashi T, Kaji H, Abe H, Chihara K. Leptin induces mitogen-activated protein kinase-dependent proliferation of C3H10T1/2 cells. J Biol Chem 272: 12897-12900, 1997 https://doi.org/10.1074/jbc.272.20.12897
  52. Takekoshi K, Ishii K, Nanmoku T, Shibuya S, Kawakami Y, Isobe K, Nakai T. Leptin stimulates catecholamine synthesis in a PKC-dependent manner in cultured porcine adrenal medullary chromaffin cells. Endocrinology 142(11): 4861-4871, 2001 https://doi.org/10.1210/en.142.11.4861
  53. Takekoshi K, Motooka M, Isobe K, Nomura F, Manmoku T, Ishii K, Nakai T. Leptin directly stimulates catecholamine secretion and synthesis in cultured porcine adrenal medullary chromaffin cells. Biochem Biophys Res Commun 261: 426-431, 1999 https://doi.org/10.1006/bbrc.1999.1025
  54. Tanabe K, Okuya S, Tanizawa Y, Matsutani A, Oka Y. Leptin induces proliferation of pancreatic cell line MIN6 through activation of mitogen-activated protein kinase. Biochem Biophys Res Commun 241: 765-768, 1997 https://doi.org/10.1006/bbrc.1997.7894
  55. Tanizawa Y, Okuya S, Ishihara H, Asano T, Yada T, Oka Y. Direct stimulation of basal insulin secretion by physiological concentrations of leptin in pancreatic beta cells. Endocrinology 138: 4513 -4516, 1997 https://doi.org/10.1210/en.138.10.4513
  56. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Woolf EA, Monroe CA, Tepper RI. Identification and expression cloning of a leptin receptor, OB-R. Cell 83: 1263-1271, 1995 https://doi.org/10.1016/0092-8674(95)90151-5
  57. Uceda G, Artalejo AR, de la Fuente MT, Lopez MG, Albillos A, Michelena P, Garcia AG, Montiel C. Modulation by L-type Ca2$^+$ channels and apamin-sensitive K$^+$ channels of muscarinic responses in cat chromaffin cells. Am J Physiol 266(5 Pt 1): C1432-1439, 1994
  58. Utsunomiya K, Yanagihara N, Tachikawa E, Cheah TB, Kajiwara K, Toyohira Y, Ueno S, Izumi F. Stimulation of catecholamine synthesis in cultured bovine adrenal medullary cells by leptin. J Neurochem 76(3): 926-934, 2001 https://doi.org/10.1046/j.1471-4159.2001.00123.x
  59. Uyama Y, Imaizumi Y, Watanabe M. Effects of cyclopiazonic acid, a novel Ca2$^+$-ATPase inhibitor on contractile responses in skinned ileal smooth muscle. Br J Pharmacol 106: 208-214, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14316.x
  60. Wada Y, Satoh K, Taira N. Cardiovascular profile of Bay-K-8644, a presumed calcium channel activator in the dog. Naunyn- Schmiedebergs Arch Pharmacol 328: 382-387, 1985 https://doi.org/10.1007/BF00692905
  61. Wakade AR. Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol 313: 463-480, 1981
  62. Yamada Y, Teraoka H, Nakazato Y, Ohga A. Intracellular Ca2$^+$ antagonist TMB-8 blocks catecholamine secretion evoked by caffeine and acetylcholine from perfused cat adrenal glands in the absence of extracellular ca2$^+$. Neurosci Lett 90: 338-342, 1988 https://doi.org/10.1016/0304-3940(88)90212-1
  63. Yamashita T, Murakami T, Otani S, Kuwajima M, Shima K. Leptin receptor signal transduction: OBRa and OBRb of fa type. Biochem Biophys Res Commun 246: 752-759, 1998 https://doi.org/10.1006/bbrc.1998.8689
  64. Yanagihara N, Utsunomiya K, Cheah TB, Hirano H, Kajiwara K, Hara K, Nakamura E, Toyohira Y, Uezono Y, Ueno S, Izumi F. Characterization and functional role of leptin receptor in bovine adrenal medullary cells. Biochem Pharmacol 59: 1141- 1145, 2000 https://doi.org/10.1016/S0006-2952(00)00240-9
  65. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432, 1994 https://doi.org/10.1038/372425a0